机器人路径规划:基于冠豪猪优化算法(Crested Porcupine Optimizer,CPO)的机器人路径规划(提供MATLAB代码)

news2024/11/13 8:05:51

  一、机器人路径规划介绍

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。对于栅格法,当空间增大时,所需存储空间剧增,决策速度下降;而人工势场法容易产生局部最优解问题和死锁现象。随着智能控制技术的发展,出现了如遗传算法算法、粒子群优化算法、麻雀搜索算法、灰狼优化算法、鲸鱼优化算法等。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人, 2005, 27(2):5.DOI:10.3321/j.issn:1002-0446.2005.02.008.

[3]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

二、栅格地图环境搭建

首先建立移动机器人工作环境,设移动机器人的工作空间为二维空间(记为RS),工作环境中的障碍物即为机床。在机器人运动过程中,障碍物为静止且大小不发生变化。按栅格法划分RS,移动机器人在栅格间行走。无障碍物的栅格为可行栅格,有障碍物的栅格为不可行栅格。栅格集包含所有栅格。栅格标识有:直角坐标法和序号法。本文采用序号标识法。

在移动机器人工作空间下按从左到右,从上到下的顺序,依次标记为序号1,2,3,···,n,每一个序号代表一个栅格。为了避免移动机器人与障碍物发生碰撞,可以将障碍物膨胀,障碍物在占原有栅格的同时,再占多个栅格,按 个栅格算。这种划分方法简单实用,能够满足环境模型与真实情况相符。从而使移动机器人在路径规划时畅通无阻。令S={1,2,3,···,N}为栅格序号集。根据上述对应关系,可知g(0,0)的序号为1,g(1,0)序号为2,直至g(X,Y)的序号为n。规划起始位置、目标位置均为任意且都属于S(但不在同一栅格内)。

在实际工作环境中,移动机器人工作环境是复杂多变的,且为三维空间。为了便于研究,本文对环境进行简化建模。栅格法是一种常用的环境表示方法,因其简单方便(二维环境),环境建模的复杂性小,因而本文环境建模采用栅格法。在栅格地图中,工作环境被划分为很多栅格,其中包括有障碍物和无障碍的栅格,在仿真程序中用0表示此栅格无障碍物,机器人可以通过此栅格,用1表示栅格有障碍物,机器人无法通过,需选择其他栅格。栅格的尺寸大小可根据工作环境中的障碍物尺寸以及安全距离进行设置。为了实现程序仿真,需要对栅格进行标识,如下图所示,以20x20的栅格环境为例来说明。

如上图所示,白色栅格表示无障碍物的栅格,黑色栅格则表示有障碍物的栅格,在地图中对每个栅格编号,不同序号的栅格在坐标系中的坐标可用下式来表示:

x=mod(Ni/N)-0.5

y=N-ceil(Ni/N)+0.5

其中,mod为取余运算,ceil表示向后取整,Ni是对应栅格的标号,N表示每 列的栅格数量,取栅格中心位置作为栅格在坐标系中的坐标。这样机器人全局路径规划的问题就转变成了利用算法在栅格地图上寻找由起始点到目标点的有序的栅格子集,这些栅格子集的中心连线便是算法寻找的路径。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

三、冠豪猪优化算法

冠豪猪优化算法(Crested Porcupine Optimizer,CPO)由Mohamed Abdel-Basset等人于2024年提出,该算法模拟冠豪猪的四种不同保护机制:视觉、听觉、气味和物理攻击。第一和第二防御技术(视觉和听觉)反映了CPO的探索行为,而第三和第四防御策略(气味和物理攻击)反映了CPO的剥削行为。该算法提出了一种称为循环种群减少技术的新策略,以模拟并非所有CP激活其防御机制,而只激活那些受到威胁的CP的介词。这种策略促进了趋同率和种群多样性。2024最新算法:冠豪猪优化算法(Crested Porcupine Optimizer,CPO)求解23个基准函数(提供MATLAB代码)_冠豪猪优化算法与cs算法比较-CSDN博客

参考文献

[1]Abdel-Basset M, Mohamed R, Abouhawwash M. Crested Porcupine Optimizer: A new nature-inspired metaheuristic[J]. Knowledge-Based Systems, 2024, 284: 111257.

四、冠豪猪优化算法求解机器人路径规划

4.1部分代码

%% 
S = [1 1];   %起点
E = [20 20];  %终点
[ub,dimensions] = size(G);        
dim = dimensions - 2;             
%% 参数设置
Max_iter= 100;    % 最大迭代次数
SearchAgents_no = 50;         % 种群数量
X_min = 1;  
lb=1;
fobj=@(x)fitness(x);
[Best_score,Best_NC,Convergence_curve]=CPO(SearchAgents_no,Max_iter,lb,ub,dim,fobj);

toc
%% 结果分析
global_best = round(Best_NC);
figure(1)
plot(Convergence_curve,'r-','linewidth',2.5)
xlabel('Iteration');
ylabel('Fitness');
legend('CPO')

4.2部分结果

五、完整MATLAB代码

机器人路径规划:基于冠豪猪优化算法(CPO)的机器人路径规划(matlab代码)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1532904.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LeetCode: 224. 基本计算器 + 模拟 + 栈】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

【原创】三十分钟实时数据可视化网站前后端教程 Scrapy + Django + React 保姆级教程向

这个本来是想做视频的,所以是以讲稿的形式写的。最后没做视频,但是觉得这篇文还是值得记录一下。真的要多记录,不然一些不常用的东西即使做过几个月又有点陌生了。 文章目录 爬虫 SCRAPYxpath 后端 DJANGO前端 REACT Hello大家好这里是小鱼&a…

sheng的学习笔记-AI-Inception network

目录:sheng的学习笔记-AI目录-CSDN博客 基础知识 构建卷积层时,你要决定过滤器的大小究竟是11(原来是13,猜测为口误),33还是55,或者要不要添加池化层。而Inception网络的作用就是代替你来决定&…

kubesphere all in one部署Jenkins提示1 Insufficient cpu

原因 devops 至少一个cpu(1000m),但是其他资源已经占用了很多cpu CPU 资源以 CPU 单位度量。Kubernetes 中的一个 CPU 等同于: 1 个 AWS vCPU 1 个 GCP核心 1 个 Azure vCore 裸机上具有超线程能力的英特尔处理器上的 1 个超线程…

编译libcurl with openssl + zlib (gzip)

libcurl 编译说明 libcurl 正常不依赖第三方库也可以进行编译使用,但是只能访问不带ssl通道的http,不能访问https,而且不支持gzip 一般现在常用的https中的ssl是使用openssl、gzip使用zlib 下面是如何编译libcurl,我们在项目中使用的是第二种…

ubuntu部署wireguard服务端,ubuntu部署wireguard客户端

docker部署方式 docker run -d \--namewg-easy \-e WG_HOST6.6.6.6服务端IP \-e PASSWORD123abc登陆管理密码 \-e WG_DEFAULT_ADDRESS10.0.8.x客户端 IP 地址范围 \-e WG_DEFAULT_DNS1.1.1.1配置dns \-e WG_ALLOWED_IPS10.0.8.0/24 \-e WG_PERSISTENT_KEEPALIVE25 \-v ~/.wg-e…

CAPL如何实现TCP Packet的option字段

在TCP协议中,主机可以根据自身的需要决定TCP通信时是否携带option字段,来扩展TCP功能。option字段属于TCP首部的扩展部分,且是可选项,TCP根据首部中的offset字段值确定TCP报文是否携带option字段。 TCP首部固定的部分有20个字节,如果没有扩展部分(option字段),20个字节…

【Qt】使用Qt实现Web服务器(四):传递参数、表单提交和获取请求参数

1、示例 1)演示 2)提交 3)显示 2、源码 1)示例源码Demo1->FormController void FormController::service(HttpRequest& request, HttpResponse& response) {

在 3D 虚拟城市中展示自定义建筑

在本教程中,您将学习如何创建 Cesium 应用程序,用您自己的 3D 模型替换真实城市中的建筑物。您可以使用它来可视化拟建建筑的影响,及如何改变天际线?从特定楼层或房间看到的景色会是什么样子? 我们将介绍如何&#xf…

动态规划(算法竞赛、蓝桥杯)--斜率优化DP打印文章

1、B站视频链接&#xff1a;E51【模板】斜率优化DP 打印文章_哔哩哔哩_bilibili 题目链接&#xff1a;Problem - 3507 #include <bits/stdc.h> using namespace std; typedef long long LL; const int N500010; int n,m,q[N]; LL s[N],f[N];double sl(int i,int j){ret…

Qt笔记 事件处理_鼠标事件

什么是事件&#xff1f; 点击鼠标左键&#xff0c;双击鼠标左键&#xff0c;鼠标来回移动&#xff0c;按下键盘按钮&#xff0c;这些都是事件。 那么事件的响应机制是什么样的呢&#xff1f; 首先main函数中有一个QApplication&#xff0c;其作用是创建一个应用程序对象&…

web自动化3-pytest前后夹具

一、pytest前后置&#xff08;夹具&#xff09;-fixture 夹具的作用&#xff1a;在用例执行之前和之后&#xff0c;需要做的准备工作之前和收尾工作。 用于固定测试环境&#xff0c;以及清理回收资源。 举个例子&#xff1a;访问一个被测页面-登录页面&#xff0c;执行测试用…

my2sql —— go语言版binlog解析及闪回工具

之前学习过python语言版binlog解析及闪回工具 MySQL闪回工具简介 及 binlog2sql工具用法 最近听同事介绍有了新的go语言版的my2sql。优点是不需要安装一大堆依赖包&#xff0c;直接可以安装使用&#xff0c;并且解析更高效&#xff0c;试用一下。 一、 下载安装 1. 软件下载 …

React函数组件Hook

问题: 相对于类组件, 函数组件的编码更简单, 效率也更高, 但函数组件不能有state (旧版) 解决: React 16.8版本设计了一套新的语法来让函数组件也可以有state Hook 是 React 16.8 的新增特性。它可以让你在不编写 class 的情况下使用 state 以及其他的 React 特性 Hook也叫钩子…

从边缘设备丰富你的 Elasticsearch 文档

作者&#xff1a;David Pilato 我们在之前的文章中已经了解了如何丰富 Elasticsearch 本身和 Logstash 中的数据。 但如果我们可以从边缘设备中做到这一点呢&#xff1f; 这将减少 Elasticsearch 要做的工作。 让我们看看如何从具有代理处理器的 Elastic 代理中执行此操作。 E…

Introduction to Data Mining 数据挖掘

Why Data Mining? • The Explosive Growth of Data: from terabytes to petabytes — Data collection and data availability ◦ Automated data collection tools, database systems, Web, computerized society — Major sources of abundant data ◦ Business: Web, e-co…

Linux-shell中变量的引用($变量名,${变量名})

1. 背景 最近写脚本时&#xff0c;发现有个变量在某个地方生效&#xff0c;某个地方又不生效&#xff0c;引用方式为 $变量名。 2. 方法 其实 shell 脚本中对变量的引用有两种方式&#xff1a; $变量名${变量名} 用下面的脚步&#xff0c;去测试效果&#xff1a; a100 b2…

excel处理_多个excel文件合并

data文件夹内&#xff0c;有多个xls文件。每个xls文件格式一致&#xff0c; 表头占两行&#xff0c;表位汇总数据占一行。 表头两行&#xff0c;拼接前第二行设置为表头&#xff0c;且删除第二行。 在python读入的dataframe中&#xff0c;游轮成本表是表头&#xff0c;第一行是…

Python 深度学习第二版(GPT 重译)(四)

九、高级计算机视觉深度学习 本章涵盖 计算机视觉的不同分支&#xff1a;图像分类、图像分割、目标检测 现代卷积神经网络架构模式&#xff1a;残差连接、批量归一化、深度可分离卷积 可视化和解释卷积神经网络学习的技术 上一章通过简单模型&#xff08;一堆Conv2D和MaxP…

【鸿蒙HarmonyOS开发笔记】通知模块之为通知添加行为意图

概述 WantAgent提供了封装行为意图的能力&#xff0c;这里所说的行为意图主要是指拉起指定的应用组件及发布公共事件等能力。HarmonyOS支持以通知的形式&#xff0c;将WantAgent从发布方传递至接收方&#xff0c;从而在接收方触发WantAgent中指定的意图。例如&#xff0c;在通…