目标检测---IOU计算详细解读(IoU、GIoU、DIoU、CIoU、EIOU、Focal-EIOU、SIOU、WIOU)

news2025/1/8 11:25:17

在这里插入图片描述

常见IoU解读与代码实现

  • 一、✒️IoU(Intersection over Union)
    • 1.1 🔥IoU原理
      • ☀️ 优点
      • ⚡️缺点
    • 1.2 🔥IoU计算
    • 1.3 📌IoU代码实现
  • 二、✒️GIoU(Generalized IoU)
    • 2.1 GIoU原理
      • ☀️优点
      • ⚡️缺点
    • 2.2 🔥GIoU计算
    • 2.3 📌GIoU代码实现
  • 三、✒️DIoU(Distance-IoU)
    • 3.1 DIoU原理
      • ☀️优点
      • ⚡️缺点
    • 3.2 DIoU计算
    • 3.3 📌DIoU代码实现
  • 四、✒️CIoU(Complete-IoU)
    • 4.1 CIoU原理
      • ☀️优点
      • ⚡️缺点
    • 4.2 CIoU计算
    • 4.3 📌CIoU代码实现
  • 五、✒️EIOU(Efficient-IoU)
    • 5.1原理
    • 5.2 代码实现
  • 六、✒️Focal-EIOU
    • 6.1 原理
      • ☀️优点
      • ⚡️缺点
    • 📌6.2 代码实现
  • 七、✒️SIOU(Soft Intersection over Union)
    • 7.1原理
  • 八、✒️Wise-IoU

一、✒️IoU(Intersection over Union)

1.1 🔥IoU原理

🚀交并比(IoU, Intersection over Union)是一种计算不同图像相互重叠比例的算法,经常被用于深度学习领域的目标检测或语义分割任务中。

在我们得到模型输出的预测框位置后,也可以计算输出框与真实框(Ground Truth Bound)之间的 IoU,此时,这个框的取值范围为 0~1,0 表示两个框不相交,1 表示两个框正好重合。

1-IOU 表示真实框与预测框之间的差异,如果用 1-IOU,这时的取值范围还是 0~1,但是变成了 0 表示两个框重合,1 表示两个框不相交,这样也就符合了模型自动求极小值的要求。因此,可以使用1-IOU来表示模型的损失函数(Loss 函数)。


🎯IoU 的定义如下:
在这里插入图片描述

✨直观来讲,IoU 就是两个图形面积的交集和并集的比值
在这里插入图片描述

☀️ 优点

使用IoU来计算预测框和目标框之间的损失有以下优点:

  • 具有尺度不变性;
  • 满足非负性;
  • 满足对称性;

⚡️缺点

如果只使用IoU交并比来计算目标框损失的话会有以下问题:

  • 预测框与真实框之间不相交的时候,如果|A∩B|=0,IOU=0,无法进行梯度计算;
  • 相同的IOU反映不出实际预测框与真实框之间的情况,虽然这三个框的IoU值相等,但是预测框与真实框之间的相对位置却完全不一样;
    在这里插入图片描述

也就是说,IoU 初步满足了计算两个图像的几何图形相似度的要求,简单实现了图像重叠度的计算,但无法体现两个图形之间的距离以及图形长宽比的相似性。

1.2 🔥IoU计算

上面介绍了IoU原理,下面是IoU简单计算的原理图,我们需要先计算出相交部分黄色的面积,然后再计算蓝框的面积与绿框围成面积的总和,然后计算两者的比值,如下:假设一个格子的面积是1,交集黄色部分的面积为2x2=4,蓝框与绿框围成面积总和为3x3+4x4-2x2=21,所以IOU=4/21=0.19;

在这里插入图片描述

在代码中并不是采用上面的计算方法,而是使用坐标进行计算,如下图,矩形 AC 与矩形 BD 相交,它们的顶点A、B、C、D,分别是:A(0,0)、B(3,2)、C(6,8)、D(9,10)
在这里插入图片描述
📟此时 IoU 的计算公式应为:
在这里插入图片描述
带入 A、B、C、D 四点的实际坐标后,可以得到:
在这里插入图片描述

1.3 📌IoU代码实现

import numpy as np

def IoU(box1, box2):
    # 计算中间矩形的宽高
    in_w = min(box1[2], box2[2]) - max(box1[0], box2[0])
    in_h = min(box1[3], box2[3]) - max(box1[1], box2[1])

    # 计算交集、并集面积
    inter = 0 if in_w <= 0 or in_h <= 0 else in_h * in_w
    union = (box2[2] - box2[0]) * (box2[3] - box2[1]) +\
            (box1[2] - box1[0]) * (box1[3] - box1[1]) - inter
    # 计算IoU
    iou = inter / union
    return iou

if __name__ == "__main__":
    box1 = [0, 0, 6, 8]  # [左上角x坐标,左上角y坐标,右下角x坐标,右下角y坐标]
    box2 = [3, 2, 9, 10]
    print(IoU(box1, box2))

运行结果:

0.23076923076923078

二、✒️GIoU(Generalized IoU)

2.1 GIoU原理

📜 CVPR2019中论文《Generalized Intersection over Union: A Metric and A Loss for Bounding BoxRegression》提出了GIOU的思想。

GIoU(Generalized Intersection over Union) 相较于 IoU 多了一个“Generalized”,通过引入预测框和真实框的最小外接矩形来获取预测框、真实框在闭包区域中的比重,从而解决了两个目标没有交集时梯度为零的问题。

引入了最小封闭形状C (可以把A,B包含在内)

在这里插入图片描述

公式定义如下:
在这里插入图片描述
其中C是两个框的最小外接矩形的面积。原有 IoU 取值区间为 [0,1],而 GIoU 的取值区间为[-1,1] ;在两个图像完全重叠时IoU=GIoU=1,当两个图像不相交的时候IoU=0,GIOU=-1

☀️优点

  1. 与IoU只关注重叠区域不同,GIOU不仅关注重叠区域,还关注其他的非重合区域,能更好的反映两者的重合度;
  2. GIOU是一种IoU的下界,取值范围[ − 1 , 1 ] 。在两者重合的时候取最大值1,在两者无交集且无限远的时候取最小值-1。因此,与IoU相比,GIoU是一个比较好的距离度量指标,解决了不重叠情况下,也就是IOU=0的情况,也能让训练继续进行下去。

⚡️缺点

但是目标框与预测框重叠的情况依旧无法判断:
在这里插入图片描述

2.2 🔥GIoU计算

上面我们已经计算出IOU的值,这里还需要计算由AD构成C的面积,也就是9x10=90;由GIOU公式可以计算出:
在这里插入图片描述

在这里插入图片描述

2.3 📌GIoU代码实现

import numpy as np

def GIoU(box1, box2):
    # 计算两个图像的最小外接矩形的面积
    x1, y1, x2, y2 = box1
    x3, y3, x4, y4 = box2
    area_c = (max(x2, x4) - min(x1, x3)) * (max(y4, y2) - min(y3, y1))

    # 计算中间矩形的宽高
    in_w = min(box1[2], box2[2]) - max(box1[0], box2[0])
    in_h = min(box1[3], box2[3]) - max(box1[1], box2[1])

    # 计算交集、并集面积
    inter = 0 if in_w <= 0 or in_h <= 0 else in_h * in_w
    union = (box2[2] - box2[0]) * (box2[3] - box2[1]) + \
            (box1[2] - box1[0]) * (box1[3] - box1[1]) - inter
    # 计算IoU
    iou = inter / union

    # 计算空白面积
    blank_area = area_c - union
    # 计算空白部分占比
    blank_count = blank_area / area_c
    giou = iou - blank_count
    return giou

if __name__ == "__main__":
    box1 = [0, 0, 6, 8]
    box2 = [3, 2, 9, 10]
    print(GIoU(box1, box2))

输出结果:

0.09743589743589745

三、✒️DIoU(Distance-IoU)

3.1 DIoU原理

🔥该原理是在19年⽂章Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression提出的
基于IoU和GIoU存在的问题,作者提出了两个问题:

  1. 直接最⼩化anchor框与⽬标框之间的归⼀化距离是否可⾏,以达到更快的收敛速度?
  2. 如何使回归在与⽬标框有重叠甚⾄包含时更准确、更快?

GIoU 虽然解决了 IoU 的一些问题,但是它并不能直接反映预测框与目标框之间的距离,DIoU(Distance-IoU)即可解决这个问题,它将两个框之间的重叠度、距离、尺度都考虑了进来,使得⽬标框回归变得更加稳定。DIoU的计算公式如下:
在这里插入图片描述
其中、b和bgt分别表示预测框与真实框的中心点坐标,p2(b,bgt)表示两个中心点的欧式距离(指在欧几里得空间中两点之间的距离),C 代表两个图像的最小外接矩形的对角线长度
在这里插入图片描述

☀️优点

DIoU 相较于其他两种计算方法的优点是:

  1. DIoU 可直接最小化两个框之间的距离,所以作为损失函数时 Loss 收敛更快。
  2. 与GIoU loss类似,DIoU loss在与⽬标框不重叠时,仍然可以为边界框提供移动⽅向。
  3. 在两个框完全上下排列或左右排列时,没有空白区域,此时 GIoU 几乎退化为了 IoU,但是 DIoU 仍然有效。
  4. DIOU还可以替换普通的IOU评价策略,应用于NMS中,使得NMS得到的结果更加合理和有效。
    在这里插入图片描述

⚡️缺点

DIoU 在完善图像重叠度的计算功能的基础上,实现了对图形距离的考量,但仍无法对图形长宽比的相似性进行很好的表示。

3.2 DIoU计算

通过计算可得,中心点 b、中心点 bgt的坐标分别为:(3,4)、(6,6)
在这里插入图片描述
此时的 DIoU 计算公式为:
在这里插入图片描述

3.3 📌DIoU代码实现

import numpy as np

def calculate_diou(box1, box2):
    # 计算两个图像的最小外接矩形的面积
    x1, y1, x2, y2 = box1
    x3, y3, x4, y4 = box2
    area_c = (max(x2, x4) - min(x1, x3)) * (max(y4, y2) - min(y3, y1))

    # 计算中间矩形的宽高
    in_w = min(box1[2], box2[2]) - max(box1[0], box2[0])
    in_h = min(box1[3], box2[3]) - max(box1[1], box2[1])

    # 计算交集、并集面积
    inter = 0 if in_w <= 0 or in_h <= 0 else in_h * in_w
    union = (box2[2] - box2[0]) * (box2[3] - box2[1]) + \
            (box1[2] - box1[0]) * (box1[3] - box1[1]) - inter

    # 计算IoU
    iou = inter / union

    # 计算中心点距离的平方
    center_dist = np.square((x1 + x2) / 2 - (x3 + x4) / 2) + \
                  np.square((y1 + y2) / 2 - (y3 + y4) / 2)

    # 计算对角线距离的平方
    diagonal_dist = np.square(max(x1, x2, x3, x4) - min(x1, x2, x3, x4)) + \
                    np.square(max(y1, y2, y3, y4) - min(y1, y2, y3, y4))

    # 计算DIoU
    diou = iou - center_dist / diagonal_dist
    return diou

box1 = [0, 0, 6, 8]
box2 = [3, 2, 9, 10]
print(calculate_diou(box1, box2))

输出结果:

0.1589460263493413

四、✒️CIoU(Complete-IoU)

4.1 CIoU原理

📜 AAAI 2020(与DIOU同一篇文章) 论文链接:Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

论⽂考虑到bbox回归三要素中的⻓宽⽐还没被考虑到计算中,为此,进⼀步在DIoU的基础上提出了CIoU,同时考虑两个矩形的长宽比,也就是形状的相似性。所以CIOU在DIOU的基础上添加了长宽比的惩罚项。
在这里插入图片描述

其中, α \alpha α 是权重函数, ν \nu ν而用来度量长宽比的相似性。计算公式为:

在这里插入图片描述

☀️优点

  1. 更准确的相似性度量:CIOU考虑了边界框的中心点距离和对角线距离,因此可以更准确地衡量两个边界框之间的相似性,尤其是在目标形状和大小不规则的情况下。
  2. 鲁棒性更强:相比传统的IoU,CIOU对于目标形状和大小的变化更具有鲁棒性,能够更好地适应各种尺寸和形状的目标检测任务。

⚡️缺点

  1. 计算复杂度增加:CIOU引入了额外的中心点距离和对角线距离的计算,因此相比传统的IoU,计算复杂度有所增加,可能会增加一定的计算成本。
  2. 实现难度较高:CIOU的计算方式相对复杂,需要对边界框的坐标进行更多的处理和计算,因此在实现上可能会相对困难一些,需要更多的技术和经验支持。

4.2 CIoU计算

中心点 b、中心点 bgt的坐标分别为:(3,4)、(6,6),由此CIoU计算公式如下:
在这里插入图片描述

在这里插入图片描述

4.3 📌CIoU代码实现

import numpy as np
import IoU
import DIoU
# box : [左上角x坐标,左上角y坐标,右下角x坐标,右下角y坐标]
box1 = [0, 0, 6, 8]
box2 = [3, 2, 9, 10]
# CIoU
def CIoU(box1, box2):
    x1, y1, x2, y2 = box1
    x3, y3, x4, y4 = box2
    # box1的宽:box1_w,box1的高:box1_h,
    box1_w = x2 - x1
    box1_h = y2 - y1
    # box2的宽:box2_w,box2的高:box2_h,
    box2_w = x4 - x3
    box2_h = y4 - y3
    iou = IoU(box1, box2)
    diou = DIoU(box1, box2)

    # v用来度量长宽比的相似性
    v = (4 / (np.pi) ** 2) * (np.arctan(int(box2_w / box2_h)) - np.arctan(int(box1_w / box1_h)))
    # α是权重函数
    a = v / ((1 + iou) + v)
    ciou = diou - a * v
    return ciou

print(CIoU(box1, box2))

输出结果:

0.1589460263493413

五、✒️EIOU(Efficient-IoU)

5.1原理

📜发表在arXiv2022年:《Focal and Efficient IOU Loss for Accurate Bounding Box Regression》上的论文

EIOU是在 CIOU 的惩罚项基础上将预测框和真实框的纵横比的影响因子拆开,分别计算预测框和真实框的长和宽,并且加入Focal聚焦优质的锚框,来解决 CIOU 存在的问题。先前基于iou的损失,例如CIOU和GIOU,不能有效地测量目标盒和锚点之间的差异,这导致BBR(边界框回归)模型优化的收敛速度慢,定位不准确。
在这里插入图片描述

针对上述问题,对CIOU损失进行了修正,提出了一种更有效的IOU损失,即EIOU损失,定义如下:
在这里插入图片描述
其中wc和hc是覆盖两个盒子的最小围框的宽度和高度。也就是说,我们将损失函数分为三个部分:IOU损失LIOU距离损失Ldis方向损失Lasp。这样,我们可以保留CIOU损失的有效特点。同时,EIOU损失直接使目标盒与锚盒宽度和高度的差值最小化,从而使收敛速度更快,定位效果更好。

5.2 代码实现

import numpy as np

def calculate_eiou(box1, box2):
    # 计算嵌入向量(这里简化为使用中心点坐标作为嵌入向量)
    center1 = np.array([(box1[0] + box1[2]) / 2, (box1[1] + box1[3]) / 2])
    center2 = np.array([(box2[0] + box2[2]) / 2, (box2[1] + box2[3]) / 2])

    # 计算嵌入向量之间的欧式距离
    euclidean_distance = np.linalg.norm(center1 - center2)

    # 计算目标框的面积
    area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])

    # 计算交集和并集的面积
    intersection = max(0, min(box1[2], box2[2]) - max(box1[0], box2[0])) * \
                   max(0, min(box1[3], box2[3]) - max(box1[1], box2[1]))
    union = area_box1 + area_box2 - intersection

    # 计算EIOU
    eiou = 1 - intersection / union + euclidean_distance
    return eiou

box1 = [0, 0, 6, 8]
box2 = [3, 2, 9, 10]
print(calculate_eiou(box1, box2))

输出结果

4.374782044694758

六、✒️Focal-EIOU

6.1 原理

🔥高质量的 anchor 总是比低质量的 anchor 少很多,这也对训练过程有害无利。所以,需要研究如何让高质量的 anchor 起到更大的作用。
贡献:

  • 总结了现有回归 loss 的问题:最重要的是没有直接优化需要优化的参数
  • 提出了现有方法收敛速度较慢的问题,很多的低质量样本贡献了大部分的梯度,限制了框的回归
  • 提出了 Focal-EIoU,平衡高质量样本和低质量样本对 loss 的贡献,也就是提升高质量(IoU 大)样本的贡献,抑制低质量(IoU 小)样本的贡献

简单的方法不能直接适用于基于IOU的损失。因此,我们最后提出Focal-EIOU损失来改善EIOU损失的性能。使用IOU的值来重新加权EIOU损失,并获得Focal-EIOU损失,通过对难以分类的样本进行更加重视的损失函数设计,从而进一步提高目标检测算法的性能。如下所示:
在这里插入图片描述

其中 γ \gamma γ为控制异常值抑制程度的参数。该损失中的Focal与传统的Focal Loss有一定的区别,传统的Focal Loss针对越困难的样本损失越大,起到的是困难样本挖掘的作用;而根据上述公式:IOU越高的损失越大,相当于加权作用,给越好的回归目标一个越大的损失,有助于提高回归精度。

☀️优点

  1. EIOU在CIOU的基础上分别计算宽高的差异值取代了纵横比,宽高损失直接使预测框与真实框的宽度和高度之差最小,使得收敛速度更快;
  2. 在处理难以分类的样本时表现更好,能够进一步提高目标检测算法的鲁棒性和准确性。

⚡️缺点

在一般情况下可能会增加一定的计算复杂度,同时需要更多的参数调优和训练策略设计。

📌6.2 代码实现

import numpy as np

def calculate_focal_eiou(box1, box2, alpha=0.25, gamma=2):
    # 计算嵌入向量(这里简化为使用中心点坐标作为嵌入向量)
    center1 = np.array([(box1[0] + box1[2]) / 2, (box1[1] + box1[3]) / 2])
    center2 = np.array([(box2[0] + box2[2]) / 2, (box2[1] + box2[3]) / 2])

    # 计算嵌入向量之间的欧式距离
    euclidean_distance = np.linalg.norm(center1 - center2)

    # 计算目标框的面积
    area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])

    # 计算交集和并集的面积
    intersection = max(0, min(box1[2], box2[2]) - max(box1[0], box2[0])) * \
                   max(0, min(box1[3], box2[3]) - max(box1[1], box2[1]))
    union = area_box1 + area_box2 - intersection

    # 计算Focal Loss
    iou = intersection / union
    focal_loss = -alpha * (1 - iou) ** gamma

    # 计算Focal-EIOU
    focal_eiou = 1 - iou + euclidean_distance + focal_loss
    return focal_eiou

box1 = [0, 0, 6, 8]
box2 = [3, 2, 9, 10]
print(calculate_focal_eiou(box1, box2))

输出结果:

4.2268530506119175

七、✒️SIOU(Soft Intersection over Union)

7.1原理

📜论文链接:《More Powerful Learning for Bounding Box Regression》

该论文中提出了一种新的损失函数 SIoU,其中考虑到所需回归之间的向量角度,重新定义了惩罚指标。应用于传统的神经网络和数据集,表明 SIoU 提高了训练的速度和推理的准确性。

在许多模拟和测试中揭示了所提出的损失函数的有效性。特别是,将 SIoU 应用于 COCO-train/COCO-val 与其他损失函数相比,提高了 +2.4% (mAP@0.5:0.95) 和 +3.6%(mAP@0.5)。

SIoU损失函数由4个Cost代价函数组成:

  • Angle cost
  • Distance cost
  • Shape cost
  • IoU cost

Angle cost(角度代价)
如果 α \alpha α<=45°的时候,需要先最小化 α \alpha α;如果 α \alpha α>45°,则需要最小化 β \beta β=90°- α \alpha α,从公式化简之后的结果可以得出,如果预测框和真实框沿着x轴或者y轴对齐的时候,此时 ⋀ \bigwedge =0,如果中心点角度为45°的时候,此时 ⋀ \bigwedge =1;
在这里插入图片描述
论文中计算公式:
Λ = 1 − 2 ∗ sin ⁡ 2 ( arcsin ⁡ ( x ) − π 4 ) \Lambda=1-2 * \sin ^2\left(\arcsin (x)-\frac{\pi}{4}\right) Λ=12sin2(arcsin(x)4π)

x = c h σ = sin ⁡ ( α ) σ = ( b c x g t − b c x ) 2 + ( b c y g t − b c y ) 2 c h = max ⁡ ( b c y g t , b c y ) − min ⁡ ( b c y g t , b c y ) \begin{gathered}x=\frac{c_h}{\sigma}=\sin (\alpha) \\ \sigma=\sqrt{\left(b_{c_x}^{g t}-b_{c_x}\right)^2+\left(b_{c_y}^{g t}-b_{c_y}\right)^2} \\ c_h=\max \left(b_{c_y}^{g t}, b_{c_y}\right)-\min \left(b_{c_y}^{g t}, b_{c_y}\right)\end{gathered} x=σch=sin(α)σ=(bcxgtbcx)2+(bcygtbcy)2 ch=max(bcygt,bcy)min(bcygt,bcy)

可以将x和 α \alpha α的值带入公式进行化简,其中 C h C_h Ch 为真实框和预测框中心点的高度差, σ \sigma σ 为真实框和预测框中心点的距离。

Λ = 1 − 2 ∗ sin ⁡ 2 ( arcsin ⁡ ( C h σ ) − π 4 ) = 1 − 2 ∗ sin ⁡ 2 ( α − π 4 ) = cos ⁡ 2 ( α − π 4 ) − sin ⁡ 2 ( α − π 4 ) = cos ⁡ ( 2 α − π 2 ) = sin ⁡ ( 2 α ) \begin{aligned} & \Lambda=1-2 * \sin ^2\left(\arcsin \left(\frac{C_h}{\sigma}\right)-\frac{\pi}{4}\right) \\ & =1-2 * \sin ^2\left(\alpha-\frac{\pi}{4}\right) \\ & =\cos ^2\left(\alpha-\frac{\pi}{4}\right)-\sin ^2\left(\alpha-\frac{\pi}{4}\right) \\ & =\cos \left(2 \alpha-\frac{\pi}{2}\right) \\ & =\sin (2 \alpha)\end{aligned} Λ=12sin2(arcsin(σCh)4π)=12sin2(α4π)=cos2(α4π)sin2(α4π)=cos(2α2π)=sin(2α)

Distance cost(距离成本)
真实值边界框与边界框预测值之间距离的计算方案。
在这里插入图片描述

根据上面定义的角度成本重新定义距离成本:
Δ = ∑ t = x , y ( 1 − e − γ ρ t ) \Delta=\sum_{t=x, y}\left(1-e^{-\gamma \rho_t}\right) Δ=t=x,y(1eγρt)
where
ρ x = ( b c x g t − b c x c w ) 2 , ρ y = ( b c y g t − b c y c h ) 2 , γ = 2 − Λ \rho_x=\left(\frac{b_{c_x}^{g t}-b_{c_x}}{c_w}\right)^2, \rho_y=\left(\frac{b_{c_y}^{g t}-b_{c_y}}{c_h}\right)^2, \gamma=2-\Lambda ρx=(cwbcxgtbcx)2,ρy=(chbcygtbcy)2,γ=2Λ

α → 0 \alpha \rightarrow 0 α0,距离成本的贡献大大减少.与之相反 α \alpha α 越接近 π 4 \frac{\pi}{4} 4π, Δ \Delta Δ就越大,随着角度的增加,问题变得更加困难。 所以,随着角度的增加 γ \gamma γ 的时间优先于距离值。当 α → 0 \alpha \rightarrow 0 α0,距离成本将变为常规成本。

Shape cost(形状成本)
形状成本定义为:
Ω = ∑ t = w , h ( 1 − e − ω t ) θ \Omega=\sum_{t=w, h}\left(1-e^{-\omega_t}\right)^\theta Ω=t=w,h(1eωt)θ
其中:
ω w = ∣ w − w g t ∣ max ⁡ ( w , w g t ) , ω h = ∣ h − h g t ∣ max ⁡ ( h , h g t ) \omega_w=\frac{\left|w-w^{g t}\right|}{\max \left(w, w^{g t}\right)}, \omega_h=\frac{\left|h-h^{g t}\right|}{\max \left(h, h^{g t}\right)} ωw=max(w,wgt)wwgt,ωh=max(h,hgt)hhgt

𝜃 的值定义了形状的成本,并且其值对于每个数据集都是唯一的。 𝜃 的值是这个方程中非常重要的一项,它控制着对形状成本的关注程度。如果𝜃的值设置为1,它将立即优化形状,从而损害形状的自由运动。为了计算 𝜃 的值,对每个数据集使用遗传算法,实验上 𝜃 的值接近 4,作者为此参数定义的范围是从 2 到 6。

➤ SIOU最后的回归损失为:
L b o x = 1 − I o U + Δ + Ω 2 L_{b o x}=1-I o U+\frac{\Delta+\Omega}{2} Lbox=1IoU+2Δ+Ω

八、✒️Wise-IoU

论文摘要:
📜近年来的研究大多假设训练数据中的示例有较高的质量,致力于强化边界框损失的拟合能力。但我们注意到目标检测训练集中含有低质量示例,如果一味地强化边界框对低质量示例的回归,显然会危害模型检测性能的提升。Focal-EIoU v1 被提出以解决这个问题,但由于其聚焦机制是静态的,并未充分挖掘非单调聚焦机制的潜能。基于这个观点,我们提出了动态非单调的聚焦机制,设计了 Wise-IoU (WIoU)。动态非单调聚焦机制使用“离群度”替代 IoU 对锚框进行质量评估,并提供了明智的梯度增益分配策略。该策略在降低高质量锚框的竞争力的同时,也减小了低质量示例产生的有害梯度。这使得 WIoU 可以聚焦于普通质量的锚框,并提高检测器的整体性能。将WIoU应用于最先进的单级检测器 YOLOv7 时,在 MS-COCO 数据集上的 AP-75 从 53.03% 提升到 54.50%

关于Wise-IoU的详细介绍可以观看这篇论文:Wise-IoU 作者导读:基于动态非单调聚焦机制的边界框损失

WIOU主要有以下几点优势:

  1. 相对面积加权
    Wiou损失函数的计算中引入了交集与并集的比值,从而对不同大小的目标框进行了相对面积加权。这样可以避免小目标对损失函数的影响过大,提升了对小目标的检测效果。
  2. 解决类别不平衡问题
    在目标检测任务中,经常会遇到类别不平衡的情况,即某些类别的目标数量明显少于其他类别。Wiou损失函数通过引入权重因子,可以对不同类别的目标进行不同程度的加权,从而解决了类别不平衡问题。
  3. 高度可定制化
    Wiou损失函数的计算中,可以根据实际需求调整交集和并集的权重因子,从而对不同任务和数据集进行高度定制化的适配。这使得Wiou损失函数在实际应用中具有更广泛的适用性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1531924.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WT32-ETH02 plus 串口转以太网开发,WT32-ETH01网关开发板升级款!

广受欢迎的WT32-ETH01网关开发板迎来了升级。 就是这款启明云端新推出的嵌入式串口转以太网开发板——WT32-ETH02 plus。应广大客户的需求&#xff0c;在WT32-ETH01的基础上增加了POE供电&#xff0c;可广泛应用于智能家居和网关等应用。开发板搭载2.4GHz Wi-Fi和蓝牙双模的SO…

plasmo开发浏览器插件MAIN模式的content脚本和普通模式content脚本通讯方案

plasmo是一个很棒的开发浏览器插件的框架&#xff0c;可以使用react和vue等语言开发&#xff0c;也是目前github上star数量最多的开发浏览器插件的框架。 github仓库地址&#xff1a;GitHub - PlasmoHQ/plasmo: &#x1f9e9; The Browser Extension Framework 官网地址&…

idea找不到或无法加载主类

前言 今天在运行项目的时候突然出了这样一个错误&#xff1a;IDEA 错误 找不到或无法加载主类,相信只要是用过IDEA的朋友都 遇到过它吧&#xff0c;但是每次遇到都是一顿焦头烂额、抓耳挠腮、急赤白咧&#xff01;咋整呢&#xff1f;听我给你吹~ 瞧我这张嘴~ 问题报错 找不…

高精度电子秤资料教程分享

高精度电子秤资料教程分享 资料下载地址&#xff1a; 高精度电子秤资料教程: https://url83.ctfile.com/d/45573183-60459202-c325be?p7526 (访问密码: 7526)

小白学视觉 | 超详细!Python中 pip 常用命令

本文来源公众号“小白学视觉”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;超详细&#xff01;Python中 pip 常用命令 相信对于大多数熟悉Python的人来说&#xff0c;一定都听说并且使用过pip这个工具&#xff0c;但是对它的了…

基于Springboot的在线装修管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的在线装修管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

python爬虫基础实验:通过DBLP数据库获取数据挖掘顶会KDD在2023年的论文收录和相关作者信息

Task1 读取网站主页整个页面的 html 内容并解码为文本串&#xff08;可使用urllib.request的相应方法&#xff09;&#xff0c;将其以UTF-8编码格式写入page.txt文件。 Code1 import urllib.requestwith urllib.request.urlopen(https://dblp.dagstuhl.de/db/conf/kdd/kdd202…

数据结构从入门到精通——直接选择排序

直接选择排序 前言一、选择排序的基本思想&#xff1a;二、直接选择排序三、直接选择排序的特性总结&#xff1a;四、直接选择排序的动画展示五、直接选择排序的代码展示test.c 六、直接选择排序的优化test.c 前言 直接选择排序是一种简单的排序算法。它的工作原理是每一次从未…

kafka集群介绍及搭建

介绍 kafka是一个高性能、低延迟、分布式的消息传递系统&#xff0c;特点在于实时处理数据。集群由多个成员节点broker组成&#xff0c;每个节点都可以独立处理消息传递和存储任务。 路由策略 发布消息由key、value组成&#xff0c;真正的消息是value&#xff0c;key是标识路…

Springboot+vue的船舶维保管理系统(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频&#xff1a; Springbootvue的船舶维保管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09…

第二证券|比特币重拾升势 新高背后风险涌动

近期价格连涨的比特币再度创出新高。金融出资报记者注意到&#xff0c;3月13日&#xff0c;在改写2021年11月69000美元纪录的基础上&#xff0c;比特币价格首次打破73000美元关口&#xff0c;创下73678.5美元的历史新高。 检查近日社交平台话题可见&#xff0c;“比特币站上73…

【明道云】如何自动将一笔记录拆分成多比并插入数据库

【背景】 用户录入包含开始日期和结束日期的交易数据&#xff0c;希望系统最终能够给出精确到日次的利润统计图表。 【分析】 颗粒度细化到日次&#xff0c;意味着需要在追加期间交易数据时能够自动拆分为日次颗粒度存储在用于统计的子表中。 这就涉及如何构建数据结构&…

JMeter 二次开发之环境准备

通过JMeter二次开发&#xff0c;可以充分发挥JMeter的潜力&#xff0c;定制化和扩展工具的能力以满足具体需求。无论是开发自定义插件、函数二次开发还是定制UI&#xff0c;深入学习和掌握JMeter的二次开发技术&#xff0c;将为接口功能测试/接口性能测试工作带来更多的便利和效…

win提权第二弹服务提权

阅读须知&#xff1a; 探索者安全团队技术文章仅供参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作,由于传播、利用本公众号所提供的技术和信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者 本人负责&#xff0c;作者不为此承担任何责任,如…

2352.相等行列对

题目&#xff1a;给一个下标从0开始、大小为n x n的整数矩阵grid&#xff0c;返回满足Ri 行和 Cj 列相等的行列对&#xff08;Ri,Cj&#xff09;的数目。 如果行和列以相同的顺序包含相同的元素&#xff08;即相等的数组&#xff09;&#xff0c;则认为二者是相等的。 解题思路…

信息收集:端口扫描原理,端口扫描分类,端口扫描工具,手动判断操作系统,操作系统识别工具

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「专栏简介」&#xff1a;此文章已录入专栏《网络安全自学教程》 端口&系统版本 一、端口扫描1、telnet2、Nmap3、Masscan4、端口扫描原…

【考研数学】《1800》如何衔接《660》/《880》?

基础题做完&#xff0c;不要急着强化 首先做一个复盘&#xff0c;1800基础的正确率如何&#xff0c;如果70%以下的话&#xff0c;从错题入手&#xff0c;把掌握不扎实的地方再进行巩固&#xff0c;否则接下来做题的话效率会很低。 接下来考虑习题衔接的问题。 关于线代复习的…

视频素材库排行榜前六名,推荐大家收藏

大家好&#xff01;今天我要给大家带来的是视频素材库排行榜前十名&#xff0c;让你的视频创作更加别出心裁&#xff01; 蛙学网在视频素材库排行榜中&#xff0c;蛙学网绝对是值得使用的。这里有大量的高质量视频素材&#xff0c;涵盖了各种风格和主题&#xff0c;特别是对于展…

一文读懂什么是序列 (sequence)

sequence 序列 sequence(序列)是一组有顺序的元素的集合 (严格的说&#xff0c;是对象的集合&#xff0c;但鉴于我们还没有引入“对象”概念&#xff0c;暂时说元素) 序列可以包含一个或多个元素&#xff0c;也可以没有任何元素。 我们之前所说的基本数据类型&#xff0c;都…

Vue3:标签的ref属性用法

一、情景说明 我们在写前端页面的时候&#xff0c;肯定会遇到获取DOM内容的情况。 以往&#xff0c;我们是用原生的js方法去获取&#xff0c;如document.getXxxx 但是&#xff0c;这中方法会有个问题&#xff0c;如果父组件和子组件的id相同&#xff0c;则会出错。 在Vue3中&…