西瓜书机器学习AUC与ℓ-rank(loss)的联系理解以及证明(通俗易懂)

news2025/1/12 1:51:08

前言

在学习到这部分时,对 ℓ-rank 以及AUC的关系难以理解透彻,在网上看到其他博主也并未弄明白,大家大多写自己的理解,我希望您在看完这篇文章时能够深刻理解这二者的关系,如果我的理解有误,希望您在评论区指正,给出您的见解。

首先理解什么是AUC?

首先理解什么是ROC曲线,ROC曲线如何绘制?

ROC曲线,即接收者操作特征曲线(Receiver Operating Characteristic Curve),反映了在不同分类阈值下真正类率(TPR)和假正类率(FPR)的变化情况。

绘制ROC曲线的过程如下:

  1. 给定m+个正例和m-个反例,首先将分类的阈值设置到最大,此时所有的例子预测结果都是反例,此时真正例率和假正例率均为0,在坐标原点(0,0)处标记一个点。
  2. 然后,逐步降低阈值,每次降低都将导致更多的样例被划分为正例。对于每个降低的阈值,计算当前的真正例率和假正例率,并在ROC图上标记相应的点。
  3. 最后,用线段连接这些点,即得ROC曲线。

通俗地说,分类阈值就像一个“门槛”,数据样本需要通过这个“门槛”才能被归类到某个类别中。在二分类问题中,模型通常会为每个样本输出一个概率值,表示该样本属于正例(比如:某种疾病的患者)的概率。这时,我们就需要选择一个阈值,来决定当这个概率达到多少时,我们就认为这个样本是正例。

例如,如果我们设定阈值为0.5,那么当模型输出的概率(概率就是模型对一个例子的判断,比如说10%可能是正例,90%是反例)大于或等于0.5时,我们就认为这个样本是正例(那么刚才认为10%为正例就不被认为是正例);如果小于0.5,则认为是负例(比如:非疾病患者)。

我们所做的就是逐渐把开始设定的正例阈值从100%逐渐降低到0。然后看模型的结果被划分为真正例与假正例的结果。(比如,有个正例,机器给的判断是50%概率是正例,那么他就会在之后我们把阈值降到50%时被纳入正例,此时,这是一个正例,模型判断也为正例,那么就被纳入真正例,如果是这是一个反例,模型给出50%概率的正例,那么此时应该别纳入假正例)。

在绘制ROC曲线时,我们会使用多个不同的阈值来计算真正例率(True Positive Rate,TPR)和假正例率(False Positive Rate,FPR)。TPR表示实际为正例的样本中被预测为正例的比例,而FPR表示实际为负例的样本中被错误地预测为正例的比例。通过改变阈值,我们可以得到不同的TPR和FPR组合,从而绘制出ROC曲线。

具体来说,从(0,0)开始,对于给定的m1个正例和m2个反例,根据预测结果进行排序,依次将这些样例划分为正例。若为**真正例,则y值增加1/m1,否则x值增加1/m2。**最后,将这些点连线,所得到的面积就是AUC。
在这里插入图片描述

什么是AUC

AUC(Area Under the Curve)曲线则是基于ROC曲线计算得到的。AUC值表示ROC曲线下的面积,用于量化评估模型的性能。AUC值越接近1,表示模型的性能越好。

ℓ-rank

在这里插入图片描述
先看这个表达式,我们需要理解一些东西

m+与m -, D +与D-,II

m +与m -分别对应正例与反例的个数。
D+与D-分别对应正例集与反例集。
II(罗马数字2),如果在II后括号中的为正确表达式,那么返回1,否则返回0。

f函数

f函数可以认为是被判断出来的先后,如果例子被先判断出来,那么函数的值大,反之就小
ℓ-rank被称为排序损失,为什么要叫排序损失呢?
我们不妨看看刚才的ROC曲线
如果是正例,那点就在上边,如果是反例,就在上一个点的右边,所以咱们最好的情况就是上来把所有的正例全部找出来,就是ROC曲线一直向上,最后才开始向右走。在这里插入图片描述
AUC表明的其实是一种顺序关系,即是在增大分类阈值(也就是让模型判断出来多少正例)时,正例会比反例被早判断出来的概率,也就是对正例的辨别能力,那这是如何在ROC曲线上体现出来的呢?我们以这个图的第二个点 为例子(假设它的坐标为(0.1)),我们可以发现在这个点的右侧,每一格(m,1)在ROC图线上都有对应的点,每个对应的点都是反例,这些反例就是在之后被发现的,因为从左下到右上,是分类阈值逐渐变大的过程,也就是相对偏后,那么,以我们这张图为例,在点(0,1)的右边的(20 - 0)* 1的矩阵(总共有20格)就是在指定阈值下正例比反例早被发现的概率(概率 需要归一化)。欸,那把所有的点的右侧部分的面积加起来归一化,不就是AOC,不就是正例比反例早发现的概率?在这里插入图片描述
同理可得,在上边我们可以知道,一个点垂直向上形成的单位宽度的矩阵就是对于一个反例来说,它比部分正例早发现的概率(需要归一化)。
于是,AUC曲线的另一种表示形式应为在这里插入图片描述

AUC = 1 - ℓ-rank

那么我们可以很轻易发现AUC与ℓ-rank的关系了,对于我们画的图AUC是右下侧,ℓ-rank是左上侧。
但是书上的还写了一个1/2 的等于项,这是为什么呢?

1/2项的来历

我们说到,ROC图线是不断增加阈值画点连线做成的图,那么他不一定是一个个例子来的,有可能阈值从1% -> 2%增加了两个例子,这两个例子得到的结果是,一个真正例,一个假正例,这导致真正例,假正例都增加了,这就形成了一个斜着的线,在左上,右下就形成了一个三角形,这就是1/2项的来历,此时,AUC也要加一个1/2的等于项。

证明请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1531373.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么共享单车泊车点可以识别得如此精准?

共享单车解决了民众最后一公里的出行问题,方便快捷,低碳环保,缓解了交通拥堵。然而,乱停乱放成为这一新兴事物发展过程中需要解决的迫在眉睫的问题。这真是个伤脑筋的问题,虽然很多城市已经推出共享单车电子围栏,由于G…

Linux入门-常见指令及权限理解

目录 1、Linux背景 1.1、发展历史 1.2、开源 1.3Linux企业应用现状 2、Linux下的基本命令 2.1、ls 指令 2.2、pwd 命令 2.3、cd 命令 2.4、touch命令 2.5、mkdir 命令 2.6、rmdir 指令和 rm指令 2.7 man 指令 2.8、cp指令 2.9、mv 指令 2.10 cat 2.11 more 2…

LLM如何处理长上下文:Lost in the middle

论文地址:Lost in the Middle: How Language Models Use Long Contexts 论文总结:写prompt的时候,需要注意内容的顺序,把重要的信息放在最前面或者最后面。 大型语言模型大有用处,在设计 prompt 方面,人们…

Elasticsearch实战:索引阻塞 —— 数据保护的终极武器

文章目录 1、索引阻塞的种类2、什么时候使用阻塞?场景1:进行系统维护场景。场景2:保护数据不被随意更改场景。场景3:优化资源使用的场景。场景4:遵守安全规则场景。 3、添加索引阻塞API4、解除设置 API5、小结6、参考 …

【无标题】【数据结构】受限制的线性表——队列

🧧🧧🧧🧧🧧个人主页🎈🎈🎈🎈🎈 🧧🧧🧧🧧🧧数据结构专栏🎈🎈🎈&…

springboot企业级抽奖项目-系统设计

数据设计 E-R图 数据主体是活动(game),内置活动策略(game_rules),通过关联表(game_product)和奖品(product)联动,和用户(user&#x…

算法打卡day21|回溯法篇01|理论知识,Leetcode 77.组合

回溯法理论知识 回溯法也可以叫做回溯搜索法,它是一种搜索的方式。回溯是递归的副产品,只要有递归就会有回溯。所以回溯函数也就是递归函数,指的都是一个函数。 回溯法的效率 回溯法并不是什么高效的算法。因为回溯的本质是穷举,…

演讲嘉宾公布 | 智能家居与会议系统专题论坛将于3月28日举办

一、智能家居与会议系统专题论坛 智能家居通过集成先进的技术和设备,为人们提供了更安全、舒适、高效、便捷且多彩的生活体验。智能会议系统它通过先进的技术手段,提高了会议效率,降低了沟通成本,提升了参会者的会议体验。对于现代…

内网渗透学习-环境搭建

1、环境搭建测试 虚拟机网络环境配置,模拟外网和内网 主机操作系统网络内网ip外网ip物理主机window10vmnet8192.168.70.1攻击机kali Linuxvmnet8192.168.70.134域控主机win server 2008 r2vmnet0192.168.52.138域成员主机win server 2k3vmnet0192.168.52.141服务器…

【Windows Defender 排除指定 文件夹、文件夹以提升性能】

使用webStorm时候提醒排出程序和目录提升性能, 于是我就把我的代码目录和常用程序全部排出, 不过不知道能不能提升多少性能, 先加上再说 一.使用UI配置排出项 隐私与安全性安全中心 病毒与威胁防护 添加或删除排出项 配置 二.使用命令配置 使用 PowerShell开启自动排除列表…

基于深度学习的场景文本检测

CTPN 简介: 基于目标检测方法的文本检测模型,在Faster RCNN的基础上进行了改进,并结合双向LSTM增强了序列提取特征,通过anchor和gt的设计将文本检测任务转化为一连串小尺度文本框的检测。 解决问题: 文本长短不一&…

Android14 - AMS之Activity启动过程(2)

Android14 - AMS之Activity启动过程(1)-CSDN博客 Android14 - AMS之Activity启动过程(3)-CSDN博客 上篇梳理到: TaskDisplayArea和Task的复用与创建 TaskDisplayArea executeRequest后,随后调用startActivi…

软件系统开发设计的基本流程

一、前言 经过年的工程实践软件系统开发的流程演变有很多种,但是最基本的还是瀑布模型。但是由于近几年演变了很多种模型,现在很多公司的研发流程并不遵循瀑布模型。主要原因是无法满足市场竞争的需求。比如在哪某个节日需要敏捷上线活动等这样的场景。没…

python网络爬虫实战教学——urllib的使用(1)

文章目录 专栏导读1、前言2、urllib的使用3、发送请求3.1 urlopen3.2 request 专栏导读 ✍ 作者简介:i阿极,CSDN 数据分析领域优质创作者,专注于分享python数据分析领域知识。 ✍ 本文录入于《python网络爬虫实战教学》,本专栏针对…

支付宝小程序一次性订阅requestSubscribeMessage授权和操作详解

一、授权 — requestSubscribeMessage my.requestSubscribeMessage({entityIds: [xxxx],success: (res) > {console.log("success回调", res)},fail: res > {console.log(fail回调, res)} })success 回调函数 behavior String 用户订阅操作结果 — subscribe …

【译】矢量数据库 101 - 什么是矢量数据库?

原文地址:Vector Database 101 - What is a Vector Database? 1. 简介 大家好——欢迎回到 Milvus 教程。在上一教程中,我们快速浏览了每天产生的日益增长的数据量。然后,我们介绍了如何将这些数据分成结构化/半结构化数据和非结构化数据&…

【python】Matplotlib库安装教程

1.你要有python(如果没装可以看这篇文章文章安装) python及pycharm安装教程(2024超详细) 2.更新pip(此步可跳过) win R ;输入cmd(就是打开命令提示符) 打开后&#x…

【Linux】传输层协议:TCP/UDP

目录 netstat pidof UDP协议 TCP协议 TCP协议段格式 TCP协议的相关机制 确认应答(ACK)机制 超时重传机制 连接管理机制 服务端状态转换 客户端状态转化 流量控制 流量控制常见问题: 滑动窗口 拥塞控制 延迟应答 面向字节流…

electron-builder 打包问题,下载慢解决方案

目录 问题说明设置下载源 ?解决方案思路下载Electron下载winCodeSign下载nsis下载nsis-resources 总结 问题说明 项目使用了Electron,在第一次打包时会遇见下载慢,导致打包进度几乎停滞不前,甚至可能直接报错 其实这是因为Electr…

UML学习体会

1. 水在前面 本来写作的水平就很一般,平时写的也少。最近看到一些文章说学习最好的方式是输出,刚好又重温了一遍UML方面的基础,所以想记录点学习心得。而且说实话这玩意平时基本不怎么用(偶尔倒是看看别人的成果)&…