交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention电能质量扰动识别模型

news2024/11/25 13:01:31

往期精彩内容:

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(三)基于Transformer的一维信号分类模型-CSDN博客

Python电能质量扰动信号分类(四)基于CNN-BiLSTM的一维信号分类模型-CSDN博客

Python电能质量扰动信号分类(五)基于CNN-Transformer的一维信号分类模型-CSDN博客

基于FFT + CNN -Transformer时域、频域特征融合的电能质量扰动识别模型-CSDN博客

Python电能质量扰动信号分类(六)基于扰动信号特征提取的超强机器学习识别模型

创新点:利用交叉注意力机制融合模型!

前言

本文基于Python仿真的电能质量扰动信号,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-BiLSTM-CrossAttention模型对电能质量扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

xxxxxxxxxxxxxxxxxxxxx

部分扰动信号类型波形图如下所示:

模型整体结构

模型整体结构如下所示,一维扰动信号经过FFT变换的频域特征以及信号本身的时域特征分别经过CNN卷积池化操作,提取全局特征,然后再经过BiLSTM提取时序特征,使用交叉注意力机制融合时域和频域的特征,通过计算注意力权重,使得模型更关注重要的特征再进行特征增强融合,最后经过全连接层和softmax输出分类结果。

时域和频域特征提取:

  • 对时域信号应用FFT,将信号转换到频域。

  • 利用CNN对频域特征进行学习和提取。CNN的卷积层可以捕捉频域特征的局部模式。

BiLSTM网络:

  • 将时域信号输入BiLSTM网络。BiLSTM(双向长短时记忆网络)可以有效地捕捉时域信号的长期依赖关系。

交叉注意力机制:

  • 使用交叉注意力机制融合时域和频域的特征。这可以通过计算注意力权重,使得模型更关注重要的特征

1 快速傅里叶变换FFT原理介绍

傅里叶变换是一种信号处理和频谱分析的工具,用于将一个信号从时间域转换到频率域。而快速傅里叶变换(FFT)是一种高效实现傅里叶变换的算法,特别适用于离散信号的处理。

第一步,导入部分数据,扰动信号可视化

第二步,扰动信号经过FFT可视化

电能质量扰动数据的预处理

2.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

2.2 制作数据集

制作数据集与分类标签

3 交叉注意力机制

3.1 Cross attention概念

  • Transformer架构中混合两种不同嵌入序列的注意机制

  • 两个序列必须具有相同的维度

  • 两个序列可以是不同的模式形态(如:文本、声音、图像)

  • 一个序列作为输入的Q,定义了输出的序列长度,另一个序列提供输入的K&V

3.2 Cross-attention算法 

  • 拥有两个序列S1、S2

  • 计算S1的K、V

  • 计算S2的Q

  • 根据K和Q计算注意力矩阵

  • 将V应用于注意力矩阵

  • 输出的序列长度与S2一致

在融合过程中,我们将经过FFT变换的频域特征作为查询序列,时序特征作为键值对序列。通过计算查询序列与键值对序列之间的注意力权重,我们可以对不同特征之间的关联程度进行建模。

4 基于FFT+CNN-BiLSTM-CrossAttention扰动信号识别模型

4.1 网络定义模型

注意:输入故障信号数据形状为 [64, 1024], batch_size=64,  ,1024代表扰动信号序列长度。

4.2 设置参数,训练模型

50个epoch,准确率近100%,用FFT+CNN-BiLSTM-CrossAttention融合网络模型分类效果显著,模型能够充分提取电能质量扰动信号的空间和时序特征和频域特征,收敛速度快,性能优越,精度高,交叉注意力机制能够对不同特征之间的关联程度进行建模,从扰动信号频域、时域特征中属于提取出对模型识别重要的特征,效果明显。

4.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1531303.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大模型第一讲笔记

目录 1、人工智能基础概念全景介绍... 2 1.1 人工智能全景图... 2 1.2 人工智能历史... 2 1.3 人工智能——机器学习... 3 监督学习、非监督学习、强化学习、机器学习之间的关系... 3 监督学习... 4 无监督学习... 5 强化学习... 5 深度学习... 6 2、语言模型的发展及…

MySQL 多表查询强化练习

环境准备 create table dept(id int PRIMARY KEY,dname VARCHAR(50),loc VARCHAR(50) ); insert into dept values (10,研发部,北京), (20,学工部, 上海), (30,销售部,广州 ), (40,财务部,深圳);create table job(id int PRIMARY KEY,jname VARCHAR(20),descripition VARCHAR(…

小米汽车定价较预期下调3万至5万,发布之前仍有可能微调

跨界造车的新势力小米汽车正逐渐揭开其神秘面纱。最新爆料显示,小米汽车内部对车辆的定价进行了讨论,较之前的预期下调了3万至5万的幅度。然而,在正式发布之前,这一价格仍有可能进行微调。 历经三年的精心筹备,小米汽车…

5G网络架构与组网部署03--5G网络组网部署

1. SA组网与NSA组网 (1)NSA 非独立组网:终端同时接入4G基站和5G基站,只能实现5G部分功能 (2)SA组网【最终目标】:5G基站可以单独提供服务,接入的是5G核心网 区别:同一时间…

双轨模式的优势、弊端与未来发展:私域分销的考量

在多元化的商业环境中,双轨模式作为一种独特的经营策略,已经逐渐引起了广泛关注。这种模式通过并行运行两个或多个互补的轨道,旨在实现资源整合、风险分散和灵活性增强。然而,与此同时,双轨模式也伴随着一些弊端和挑战…

FPGA高端项目:FPGA基于GS2971+GS2972架构的SDI视频收发+HLS图像缩放+多路视频拼接,提供4套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博主所有FPGA工程项目-->汇总目录本博已有的 SDI 编解码方案本方案的SDI接收发送本方案的SDI接收图像缩放应用本方案的SDI接收纯verilog图像缩放纯verilog多路视频拼接应用本方案的SDI接收OSD动态字符叠加输出应用本方案的SDI接收HLS…

【LeetCode每日一题】1793. 好子数组的最大分数

文章目录 [1793. 好子数组的最大分数](https://leetcode.cn/problems/maximum-score-of-a-good-subarray/)思路:单调栈代码: 1793. 好子数组的最大分数 思路:单调栈 1遍历数组,用单调栈来找到该位置左边比该位置小的数&#xff0…

Linux/Monitored

Enumeration nmap 用 nmap 扫描了常见的端口,发现对外开放了 22,80,389,443,5667 端口,端口详细信息如下 ┌──(kali㉿kali)-[~/vegetable/HTB/Monitored] └─$ nmap -sC -sV -p 22,80,389,443,5667 10.10.11.248 Starting Nmap 7.93 ( https://nm…

印度金融公司数据遭泄露,泄露数据超过3TB

近期,印度非银行金融公司 IKF Finance 泄露了超过 3 TB 的敏感客户和员工数据,可能会暴露其整个用户群。 Cybernews 研究团队发现,一个配置错误的 MongoDB 实例导致超过 400 万份 IKF Finance 文档被公开。 企业通常使用 MongoDB 来组织和存…

Linux——程序地址空间

我们先来看这样一段代码&#xff1a; #include <stdio.h> #include <unistd.h> #include <stdlib.h>int g_val 0;int main() {pid_t id fork();if(id < 0){perror("fork");return 0;}else if(id 0){ //child,子进程肯定先跑完&#xff0c;也…

时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解

时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.CEEMDAN方法的分解效果取决于白噪声幅值权重(Nstd)和噪声添…

SpringCloud从入门到精通速成(一)

文章目录 1.认识微服务1.0.学习目标1.1.单体架构1.2.分布式架构1.3.微服务1.4.SpringCloud1.5.总结 2.服务拆分和远程调用2.1.服务拆分原则2.2.服务拆分示例2.2.1.导入Sql语句2.2.2.导入demo工程 2.3.实现远程调用案例2.3.1.案例需求&#xff1a;2.3.2.注册RestTemplate2.3.3.实…

Python爬虫获取接口数据

Python爬虫获取接口数据 正常人的操作​​​​​​​​​​爬虫的思路标题获取请求信息标题请求转换为代码完整代码请求返回信息执行程序获取静态网页数据的教程,适用于我们要爬取的数据在网页源代码中出现,但是还是有很多的数据是源代码中没有的,需要通过接口访问服务器来获…

游戏服务端配置“热更”及“秒启动”终极方案(golang/ygluu/卢益贵)

游戏服务端配置“热更”及“秒启动”终极方案 ygluu 卢益贵 关键词&#xff1a;游戏微服务架构、游戏服务端热更、模块化解耦、golang 目录 一、前言 二、异步线程加载/重载方案 三、配置表碎片化方案 四、指针间接引用 五、重载通知 六、示例代码 七、相关连接 一、…

【CKA模拟题】别再犯难!一文教你用两种方式快速创建Pod!

题干 For this question, please set this context (In exam, diff cluster name) kubectl config use-context kubernetes-adminkubernetesCreate a pod called sleep-pod using the nginx image and also sleep for give any value for seconds. 使用nginx image创建一个名…

探索山海鲸可视化:相较于Excel的独特优势分析

作为一名新用户&#xff0c;我近期开始接触并尝试使用山海鲸可视化工具&#xff0c;这款软件最初吸引我的点在其免费可视化编辑、本地化部署的特点&#xff0c;用了一段时间后&#xff0c;我发现相较于之前使用的Excel来制作可视化看板&#xff0c;两者在多个方面有着显著的区别…

WordPress Plugin NotificationX插件 SQL注入漏洞复现(CVE-2024-1698)

0x01 产品简介 WordPress和WordPress plugin都是WordPress基金会的产品。WordPress是一套使用PHP语言开发的博客平台。该平台支持在PHP和MySQL的服务器上架设个人博客网站。 0x02 漏洞概述 WordPress plugin NotificationX是一个应用插件。2.8.2版本及之前 存在安全漏洞,该…

数据库简介与MySQL编译安装

1数据库基础 什么是数据库 数据库&#xff08;Database&#xff09;是一个有组织的数据存储系统&#xff0c;用于有效地存储、检索、管理和维护数据。数据库系统允许用户以结构化的方式存储和操作大量数据&#xff0c;并提供了一种可靠的方法来管理和维护这些数据&#xff0c…

<地球科学专题>机器学习与灾害风险

<地球科学专题>机器学习与灾害风险 南昌大学黄发明副教授同济大学--张东明教授https://www.koushare.com/lives/room/081366 蔻享直播间,稍后会有快速回放。 南昌大学黄发明副教授

Linux--Ubuntu安装

Linux操作系统时程序员必须要学的操作系统。接下来我们就来看一下Linux操作系统是如何安装的 我们在 Vmware 虚拟机中安装 linux 系统&#xff0c;所以需要先安装 vmware 软件&#xff0c;然后再 安装 Linux 系统。 一.所需安装文件&#xff1a; Vmware 下载地址(现在最新版的…