在Rv1126上直接对Nv12图像进行绘制时,颜色是灰色。故将Nv12转BGR后绘制图像,绘制完成后转成Nv12,BGR的图像颜色是正常的,但是NV12的图像颜色未画全,如图:
1.排查发现是RGB转NV12的函数出现问题,故百度找到一个可用的网址:RGB转换为NV12的代码_rgb转nv12-CSDN博客
2.增加了一个step,RGB为3,RGBA为4
#include "BGR2Nv12.h"
//https://software.intel.com/en-us/node/503873
//YCbCr Color Model:
// The YCbCr color space is used for component digital video and was developed as part of the ITU-R BT.601 Recommendation. YCbCr is a scaled and offset version of the YUV color space.
// The Intel IPP functions use the following basic equations [Jack01] to convert between R'G'B' in the range 0-255 and Y'Cb'Cr' (this notation means that all components are derived from gamma-corrected R'G'B'):
// Y' = 0.257*R' + 0.504*G' + 0.098*B' + 16
// Cb' = -0.148*R' - 0.291*G' + 0.439*B' + 128
// Cr' = 0.439*R' - 0.368*G' - 0.071*B' + 128
//Y' = 0.257*R' + 0.504*G' + 0.098*B' + 16
static float Rgb2Y(float r0, float g0, float b0)
{
float y0 = 0.257f*r0 + 0.504f*g0 + 0.098f*b0 + 16.0f;
return y0;
}
//U equals Cb'
//Cb' = -0.148*R' - 0.291*G' + 0.439*B' + 128
static float Rgb2U(float r0, float g0, float b0)
{
float u0 = -0.148f*r0 - 0.291f*g0 + 0.439f*b0 + 128.0f;
return u0;
}
//V equals Cr'
//Cr' = 0.439*R' - 0.368*G' - 0.071*B' + 128
static float Rgb2V(float r0, float g0, float b0)
{
float v0 = 0.439f*r0 - 0.368f*g0 - 0.071f*b0 + 128.0f;
return v0;
}
//Convert two rows from RGB to two Y rows, and one row of interleaved U,V.
//I0 and I1 points two sequential source rows.
//I0 -> rgbrgbrgbrgbrgbrgb...
//I1 -> rgbrgbrgbrgbrgbrgb...
//Y0 and Y1 points two sequential destination rows of Y plane.
//Y0 -> yyyyyy
//Y1 -> yyyyyy
//UV0 points destination rows of interleaved UV plane.
//UV0 -> uvuvuv
static void Rgb2NV12TwoRows(const unsigned char I0[],
const unsigned char I1[],
int step,
const int image_width,
unsigned char Y0[],
unsigned char Y1[],
unsigned char UV0[])
{
int x; //Column index
//Process 4 source pixels per iteration (2 pixels of row I0 and 2 pixels of row I1).
for (x = 0; x < image_width; x += 2)
{
//Load R,G,B elements from first row (and convert to float).
float r00 = (float)I0[x*step + 0];
float g00 = (float)I0[x*step + 1];
float b00 = (float)I0[x*step + 2];
//Load next R,G,B elements from first row (and convert to float).
float r01 = (float)I0[x*step + step+0];
float g01 = (float)I0[x*step + step+1];
float b01 = (float)I0[x*step + step+2];
//Load R,G,B elements from second row (and convert to float).
float r10 = (float)I1[x*step + 0];
float g10 = (float)I1[x*step + 1];
float b10 = (float)I1[x*step + 2];
//Load next R,G,B elements from second row (and convert to float).
float r11 = (float)I1[x*step + step+0];
float g11 = (float)I1[x*step + step+1];
float b11 = (float)I1[x*step + step+2];
//Calculate 4 Y elements.
float y00 = Rgb2Y(r00, g00, b00);
float y01 = Rgb2Y(r01, g01, b01);
float y10 = Rgb2Y(r10, g10, b10);
float y11 = Rgb2Y(r11, g11, b11);
//Calculate 4 U elements.
float u00 = Rgb2U(r00, g00, b00);
float u01 = Rgb2U(r01, g01, b01);
float u10 = Rgb2U(r10, g10, b10);
float u11 = Rgb2U(r11, g11, b11);
//Calculate 4 V elements.
float v00 = Rgb2V(r00, g00, b00);
float v01 = Rgb2V(r01, g01, b01);
float v10 = Rgb2V(r10, g10, b10);
float v11 = Rgb2V(r11, g11, b11);
//Calculate destination U element: average of 2x2 "original" U elements.
float u0 = (u00 + u01 + u10 + u11)*0.25f;
//Calculate destination V element: average of 2x2 "original" V elements.
float v0 = (v00 + v01 + v10 + v11)*0.25f;
//Store 4 Y elements (two in first row and two in second row).
Y0[x + 0] = (unsigned char)(y00 + 0.5f);
Y0[x + 1] = (unsigned char)(y01 + 0.5f);
Y1[x + 0] = (unsigned char)(y10 + 0.5f);
Y1[x + 1] = (unsigned char)(y11 + 0.5f);
//Store destination U element.
UV0[x + 0] = (unsigned char)(u0 + 0.5f);
//Store destination V element (next to stored U element).
UV0[x + 1] = (unsigned char)(v0 + 0.5f);
}
}
//Convert image I from pixel ordered RGB to NV12 format.
//I - Input image in pixel ordered RGB format
//image_width - Number of columns of I
//image_height - Number of rows of I
//J - Destination "image" in NV12 format.
//I is pixel ordered RGB color format (size in bytes is image_width*image_height*3):
//RGBRGBRGBRGBRGBRGB
//RGBRGBRGBRGBRGBRGB
//RGBRGBRGBRGBRGBRGB
//RGBRGBRGBRGBRGBRGB
//
//J is in NV12 format (size in bytes is image_width*image_height*3/2):
//YYYYYY
//YYYYYY
//UVUVUV
//Each element of destination U is average of 2x2 "original" U elements
//Each element of destination V is average of 2x2 "original" V elements
//
//Limitations:
//1. image_width must be a multiple of 2.
//2. image_height must be a multiple of 2.
//3. I and J must be two separate arrays (in place computation is not supported).
void Rgb2NV12(const unsigned char I[], int step,
const int image_width,
const int image_height,
unsigned char J[])
{
//In NV12 format, UV plane starts below Y plane.
unsigned char *UV = &J[image_width*image_height];
//I0 and I1 points two sequential source rows.
const unsigned char *I0; //I0 -> rgbrgbrgbrgbrgbrgb...
const unsigned char *I1; //I1 -> rgbrgbrgbrgbrgbrgb...
//Y0 and Y1 points two sequential destination rows of Y plane.
unsigned char *Y0; //Y0 -> yyyyyy
unsigned char *Y1; //Y1 -> yyyyyy
//UV0 points destination rows of interleaved UV plane.
unsigned char *UV0; //UV0 -> uvuvuv
int y; //Row index
//In each iteration: process two rows of Y plane, and one row of interleaved UV plane.
for (y = 0; y < image_height; y += 2)
{
I0 = &I[y*image_width*step]; //Input row width is image_width*3 bytes (each pixel is R,G,B).
I1 = &I[(y+1)*image_width*step];
Y0 = &J[y*image_width]; //Output Y row width is image_width bytes (one Y element per pixel).
Y1 = &J[(y+1)*image_width];
UV0 = &UV[(y/2)*image_width]; //Output UV row - width is same as Y row width.
//Process two source rows into: Two Y destination row, and one destination interleaved U,V row.
Rgb2NV12TwoRows(I0,
I1,
step,
image_width,
Y0,
Y1,
UV0);
}
}
调用:
cv::Mat m_stJpg_640x384 = cv::imread("D:\\ImageToNv12\\111.jpg");
if (!m_stJpg_640x384.empty()) {
cv::cvtColor(m_stJpg_640x384, m_stJpg_640x384, COLOR_BGR2RGB);
unsigned char* pData = new unsigned char[1920 * 1080 * 3];
Rgb2NV12(m_stJpg_640x384.data, 3, m_stJpg_640x384.cols, m_stJpg_640x384.rows, pData);
WriteFile("m.yuv", "wb+", pData, m_stJpg_640x384.cols * m_stJpg_640x384.rows * 3 / 2);
delete[] pData;
}