什么是 Chain of Thought
CoT这个概念来源于学术界,是谷歌大脑的Jason Wei等人于2022年在论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(自我一致性提升了语言模型中的思维链推理能力)》中提出来的概念。它提出,如果生成一系列的中间推理步骤,就能够显著提高大型语言模型进行复杂推理的能力。
Few-Shot CoT
Few-Shot CoT 简单的在提示中提供了一些链式思考示例(Chain-of-Thought Prompting),足够大的语言模型的推理能力就能够被增强。
假设我们正在开发一个AI花店助手,它的任务是帮助用户选择他们想要的花,并生成一个销售列表。在这个过程中,我们可以使用CoT来引导AI的推理过程。
- 问题理解:首先,AI需要理解用户的需求。例如,用户可能会说:“今天要参加朋友的生日Party,想送束花祝福她。”我们可以给AI一个提示模板,里面包含示例:“遇到XX问题,我先看自己有没有相关知识,有的话,就提供答案;没有,就调用工具搜索,有了知识后再试图解决。”—— 这就是给了AI一个思维链的示例。
- 信息搜索:接下来,AI需要搜索相关信息。例如,它可能需要查找哪些花最适合生日派对。
- 决策制定:基于收集到的信息,AI需要制定一个决策。我们可以通过思维链让他详细思考决策的流程,先做什么后做什么。例如,我们可以给它一个示例:“遇到生日派对送花的情况,我先考虑用户的需求,然后查看鲜花的库存,最后决定推荐一些玫瑰和百合,因为这些花通常适合生日派对。”—— 那么有了生日派对这个场景做示例,大模型就能把类似的思维流程运用到其它场景
- 生成销售列表:最后,AI使用OutputParser生成一个销售列表,包括推荐的花和价格。
Zero-Shot CoT
下面的这两个CoT提示模板的例子,来自于Google Research和东京大学的论文《大语言模型是零样本推理者》。
在Zero-Shot CoT中,你只要简单地告诉模型“让我们一步步的思考(Let’s think step by step)”,
Chain of Thought 实战
项目需求:在这个示例中,你正在开发一个AI运营助手,我们要展示AI如何根据用户的需求推理和生成答案。然后,AI根据当前的用户请求进行推理,提供了具体的花卉建议并解释了为什么选择这些建议。
CoT的模板设计
针对这个聊天机器人的需求,我设计了下面这样的思维链模板。
- 作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。
- 我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
- 同时,我也会向客户解释我这样推荐的原因。
示例 1:
人类:我想找一种象征爱情的花。
AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的
# 设置环境变量和API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'
# 创建聊天模型
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
# 设定 AI 的角色和目标
role_template = "你是一个为花店电商公司工作的AI助手, 你的目标是帮助客户根据他们的喜好做出明智的决定"
# CoT 的关键部分,AI 解释推理过程,并加入一些先前的对话示例(Few-Shot Learning)
cot_template = """
作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。
我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
同时,我也会向客户解释我这样推荐的原因。
示例 1:
人类:我想找一种象征爱情的花。
AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。
示例 2:
人类:我想要一些独特和奇特的花。
AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。
"""
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
system_prompt_role = SystemMessagePromptTemplate.from_template(role_template)
system_prompt_cot = SystemMessagePromptTemplate.from_template(cot_template)
# 用户的询问
human_template = "{human_input}"
human_prompt = HumanMessagePromptTemplate.from_template(human_template)
# 将以上所有信息结合为一个聊天提示
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_role, system_prompt_cot, human_prompt])
prompt = chat_prompt.format_prompt(human_input="我想为我的女朋友购买一些花。她喜欢粉色和紫色。你有什么建议吗?").to_messages()
# 接收用户的询问,返回回答结果
response = llm(prompt)
print(response)
关键在于system_prompt_role, system_prompt_cot。还可以设置进去
Tree of Thought
CoT这种思想,为大模型带来了更好的答案,然而,对于需要探索或预判战略的复杂任务来说,传统或简单的提示技巧是不够的。基于CoT的思想,Yao和Long等人几乎在同一时间在论文《思维之树:使用大型语言模型进行深思熟虑的问题解决》和《大型语言模型指导的思维之树》中,进一步提出了思维树(Tree of Thoughts,ToT)框架,该框架基于思维链提示进行了总结,引导语言模型探索把思维作为中间步骤来解决通用问题。
ToT是一种解决复杂问题的框架,它在需要多步骤推理的任务中,引导语言模型搜索一棵由连贯的语言序列(解决问题的中间步骤)组成的思维树,而不是简单地生成一个答案。ToT框架的核心思想是:让模型生成和评估其思维的能力,并将其与搜索算法(如广度优先搜索和深度优先搜索)结合起来,进行系统性地探索和验证。
应用ToT的思想,给出一个鲜花运营方面的示例:
假设一个顾客在鲜花网站上询问:“我想为我的妻子购买一束鲜花,但我不确定应该选择哪种鲜花。她喜欢淡雅的颜色和花香。”
AI(使用ToT框架):
思维步骤1:理解顾客的需求。
顾客想为妻子购买鲜花。
顾客的妻子喜欢淡雅的颜色和花香。
思维步骤2:考虑可能的鲜花选择。
候选1:百合,因为它有淡雅的颜色和花香。
候选2:玫瑰,选择淡粉色或白色,它们通常有花香。
候选3:紫罗兰,它有淡雅的颜色和花香。
候选4:桔梗,它的颜色淡雅但不一定有花香。
候选5:康乃馨,选择淡色系列,它们有淡雅的花香。
思维步骤3:根据顾客的需求筛选最佳选择。
百合和紫罗兰都符合顾客的需求,因为它们都有淡雅的颜色和花香。
淡粉色或白色的玫瑰也是一个不错的选择。
桔梗可能不是最佳选择,因为它可能没有花香。
康乃馨是一个可考虑的选择
思维步骤4:给出建议。
“考虑到您妻子喜欢淡雅的颜色和花香,我建议您可以选择百合或紫罗兰。淡粉色或白色的玫瑰也是一个很好的选择。希望这些建议能帮助您做出决策!”
这个例子,可以作为FewShot示例之一,传递给模型,让他学着实现ToT。
总结
- CoT的核心思想是通过生成一系列中间推理步骤来增强模型的推理能力。在Few-Shot CoT和Zero-Shot CoT两种应用方法中,前者通过提供链式思考示例传递给模型,后者则直接告诉模型进行要按部就班的推理。
- ToT进一步扩展了CoT的思想,通过搜索由连贯的语言序列组成的思维树来解决复杂问题。我通过一个鲜花选择的实例,展示了如何在实际应用中使用ToT框架。
有朋友在GitHub上开了一个 Repo,专门给大家介绍ToT的应用方法和实例,他们还给出了几个非常简单的通用ToT提示语,就像下面这样。