03|提示工程(下):用思维链和思维树提升模型思考质量

news2024/11/15 9:50:59

什么是 Chain of Thought

CoT这个概念来源于学术界,是谷歌大脑的Jason Wei等人于2022年在论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(自我一致性提升了语言模型中的思维链推理能力)》中提出来的概念。它提出,如果生成一系列的中间推理步骤,就能够显著提高大型语言模型进行复杂推理的能力。

Few-Shot CoT

Few-Shot CoT 简单的在提示中提供了一些链式思考示例(Chain-of-Thought Prompting),足够大的语言模型的推理能力就能够被增强。
image.png

假设我们正在开发一个AI花店助手,它的任务是帮助用户选择他们想要的花,并生成一个销售列表。在这个过程中,我们可以使用CoT来引导AI的推理过程。

  1. 问题理解:首先,AI需要理解用户的需求。例如,用户可能会说:“今天要参加朋友的生日Party,想送束花祝福她。”我们可以给AI一个提示模板,里面包含示例:“遇到XX问题,我先看自己有没有相关知识,有的话,就提供答案;没有,就调用工具搜索,有了知识后再试图解决。”—— 这就是给了AI一个思维链的示例。
  2. 信息搜索:接下来,AI需要搜索相关信息。例如,它可能需要查找哪些花最适合生日派对。
  3. 决策制定:基于收集到的信息,AI需要制定一个决策。我们可以通过思维链让他详细思考决策的流程,先做什么后做什么。例如,我们可以给它一个示例:“遇到生日派对送花的情况,我先考虑用户的需求,然后查看鲜花的库存,最后决定推荐一些玫瑰和百合,因为这些花通常适合生日派对。”—— 那么有了生日派对这个场景做示例,大模型就能把类似的思维流程运用到其它场景
  4. 生成销售列表:最后,AI使用OutputParser生成一个销售列表,包括推荐的花和价格。

Zero-Shot CoT

下面的这两个CoT提示模板的例子,来自于Google Research和东京大学的论文《大语言模型是零样本推理者》。
在Zero-Shot CoT中,你只要简单地告诉模型“让我们一步步的思考(Let’s think step by step)”,
image.png

Chain of Thought 实战

项目需求:在这个示例中,你正在开发一个AI运营助手,我们要展示AI如何根据用户的需求推理和生成答案。然后,AI根据当前的用户请求进行推理,提供了具体的花卉建议并解释了为什么选择这些建议。

CoT的模板设计

针对这个聊天机器人的需求,我设计了下面这样的思维链模板。

  • 作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。
  • 我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
  • 同时,我也会向客户解释我这样推荐的原因。

示例 1:
人类:我想找一种象征爱情的花。
AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的

# 设置环境变量和API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'

# 创建聊天模型
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)

# 设定 AI 的角色和目标
role_template = "你是一个为花店电商公司工作的AI助手, 你的目标是帮助客户根据他们的喜好做出明智的决定"

# CoT 的关键部分,AI 解释推理过程,并加入一些先前的对话示例(Few-Shot Learning)
cot_template = """
作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。 

我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
同时,我也会向客户解释我这样推荐的原因。

示例 1:
  人类:我想找一种象征爱情的花。
  AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。

示例 2:
  人类:我想要一些独特和奇特的花。
  AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。
"""
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
system_prompt_role = SystemMessagePromptTemplate.from_template(role_template)
system_prompt_cot = SystemMessagePromptTemplate.from_template(cot_template)

# 用户的询问
human_template = "{human_input}"
human_prompt = HumanMessagePromptTemplate.from_template(human_template)

# 将以上所有信息结合为一个聊天提示
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_role, system_prompt_cot, human_prompt])

prompt = chat_prompt.format_prompt(human_input="我想为我的女朋友购买一些花。她喜欢粉色和紫色。你有什么建议吗?").to_messages()

# 接收用户的询问,返回回答结果
response = llm(prompt)
print(response)

关键在于system_prompt_role, system_prompt_cot。还可以设置进去

Tree of Thought

CoT这种思想,为大模型带来了更好的答案,然而,对于需要探索或预判战略的复杂任务来说,传统或简单的提示技巧是不够的。基于CoT的思想,Yao和Long等人几乎在同一时间在论文《思维之树:使用大型语言模型进行深思熟虑的问题解决》和《大型语言模型指导的思维之树》中,进一步提出了思维树(Tree of Thoughts,ToT)框架,该框架基于思维链提示进行了总结,引导语言模型探索把思维作为中间步骤来解决通用问题。
ToT是一种解决复杂问题的框架,它在需要多步骤推理的任务中,引导语言模型搜索一棵由连贯的语言序列(解决问题的中间步骤)组成的思维树,而不是简单地生成一个答案。ToT框架的核心思想是:让模型生成和评估其思维的能力,并将其与搜索算法(如广度优先搜索和深度优先搜索)结合起来,进行系统性地探索和验证。
image.png

应用ToT的思想,给出一个鲜花运营方面的示例:
假设一个顾客在鲜花网站上询问:“我想为我的妻子购买一束鲜花,但我不确定应该选择哪种鲜花。她喜欢淡雅的颜色和花香。”
AI(使用ToT框架):
思维步骤1:理解顾客的需求。
顾客想为妻子购买鲜花。
顾客的妻子喜欢淡雅的颜色和花香。

思维步骤2:考虑可能的鲜花选择。
候选1:百合,因为它有淡雅的颜色和花香。
候选2:玫瑰,选择淡粉色或白色,它们通常有花香。
候选3:紫罗兰,它有淡雅的颜色和花香。
候选4:桔梗,它的颜色淡雅但不一定有花香。
候选5:康乃馨,选择淡色系列,它们有淡雅的花香。

思维步骤3:根据顾客的需求筛选最佳选择。
百合和紫罗兰都符合顾客的需求,因为它们都有淡雅的颜色和花香。
淡粉色或白色的玫瑰也是一个不错的选择。
桔梗可能不是最佳选择,因为它可能没有花香。
康乃馨是一个可考虑的选择

思维步骤4:给出建议。
“考虑到您妻子喜欢淡雅的颜色和花香,我建议您可以选择百合或紫罗兰。淡粉色或白色的玫瑰也是一个很好的选择。希望这些建议能帮助您做出决策!”
这个例子,可以作为FewShot示例之一,传递给模型,让他学着实现ToT。

总结

  • CoT的核心思想是通过生成一系列中间推理步骤来增强模型的推理能力。在Few-Shot CoT和Zero-Shot CoT两种应用方法中,前者通过提供链式思考示例传递给模型,后者则直接告诉模型进行要按部就班的推理。
  • ToT进一步扩展了CoT的思想,通过搜索由连贯的语言序列组成的思维树来解决复杂问题。我通过一个鲜花选择的实例,展示了如何在实际应用中使用ToT框架。
    有朋友在GitHub上开了一个 Repo,专门给大家介绍ToT的应用方法和实例,他们还给出了几个非常简单的通用ToT提示语,就像下面这样。

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1527766.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

双向队列广搜

适用情况 适用的情况:解决最短路径问题 当我们已起始点和终点时,我们可以采用双向队列广搜去解决问题。所谓的双向队列广搜,就是让起点向终点搜索,终点向起点搜索,二者同时开始,那么当它们第一次1相遇时&am…

RocketMQ - 一条消息写入CommitLog文件之后,如何实时更新索引文件?

Broker收到一条消息之后,其实就会直接把消息写入到CommitLog里去,但是它写入刚开始仅仅是写入到MappedFile映射的一块内存里去,后续是根据刷盘策略去决定是否立即把数据从内存刷入磁盘的。 实际上,Broker启动的时候会开启一个线程,ReputMessageService,他会把CommitLog更…

FreeRTOS教程7 事件组

目录 1、准备材料 2、学习目标 3、前提知识 3.1、什么是事件组? 3.1、事件组特征 3.1.1、事件组、事件标志和事件位 3.1.2、EventBits_t 数据类型 3.1.3、多个任务访问 3.2、创建事件组 3.3、操作事件组 3.4、xEventGroupWaitBits() API 函数 3.4.1、ux…

主机与windows虚拟机远程桌面实现方法

目录 一、虚拟机相关配置1. 配置虚拟机网络2. 打开虚拟机远程桌面功能3. 配置虚拟机用户与分组 二、主机相关配置 当无法通过共享文件夹实现主机与windows虚拟机文件共享时,可以通过主机与虚拟机远程桌面的方法实现文件的共享传输。本文主要介绍主机与虚拟机远程桌面…

【接口防重复提交】⭐️基于RedisLockRegistry 分布式锁管理器实现

目录 前言 思路 实现方式 实践 1.引入相关依赖 2.aop注解 3.切面类代码 4.由于启动时报错找不到对应的RedisLockRegistry bean,选择通过配置类手动注入,配置类代码如下 测试 章末 前言 项目中有个用户根据二维码绑定身份的接口,由于用户在…

诺视科技完成亿元Pre-A2轮融资,加速Micro-LED微显示芯片商业化落地

近日,Micro-LED微显示芯片研发商诺视科技(苏州)有限公司(以下简称“诺视科技”)宣布完成亿元Pre-A2轮融资,本轮融资由力合资本领投,老股东盛景嘉成、汕韩基金以及九合创投持续加码,这…

YOLOv8改进 | 图像去雾 | MB-TaylorFormer改善YOLOv8高分辨率和图像去雾检测(ICCV,全网独家首发)

一、本文介绍 本文给大家带来的改进机制是图像去雾MB-TaylorFormer,其发布于2023年的国际计算机视觉会议(ICCV)上,可以算是一遍比较权威的图像去雾网络, MB-TaylorFormer是一种为图像去雾设计的多分支高效Transformer网络,它通过应用泰勒公式展开的方式来近似softmax-at…

华为openEuler系统安装openjdk并配置环境变量

华为openEuler系统安装openjdk并配置环境变量 1、安装JDK软件包 执行dnf list installed | grep jdk 查询JDK软件是否已安装。 $ dnf list installed | grep jdk查看命令打印信息,若打印信息中包含“jdk”,表示该软件已经安装了,则不需要再…

堆排序(向下调整法,向上调整法详解)

目录 一、 二叉树的顺序结构 二、 堆的概念及结构 三、数组存储、顺序存储的规律 此处可能会有疑问,左右孩子的父节点计算为什么可以归纳为一个结论了? 四、大小堆解释 五、大小堆的实现(向上和向下调整法) 5.11向上调整法…

docxTemplater——从word模板生成docx文件

官网文档:Get Started (Browser) | docxtemplater 官网在线演示:Demo of Docxtemplater with all modules active | docxtemplater 源码:https://github.com/open-xml-templating/docxtemplater 不仅可以处理word(免费&#xf…

【深度学习实践】面部表情识别,深度学习分类模型,mmpretrain用于分类的实用教程,多任务网络头

文章目录 数据集数据集的进一步处理转换training.csv转换validation.csv 剔除无法使用的图片数据选择mmpretrain框架来训练配置四个文件改写base model改写base datasetsschedulesdefault_runtime 总配置开始训练训练分析考虑在网络上增加facial_landmarks回归head考虑是否可以…

论文解析:V3D: Video Diffusion Models are Effective 3DGenerators

摘要: 自动三维生成最近引起了广泛关注。最近的方法大大加快了生成速度,但由于模型容量有限或三维数据,生成的物体通常不够精细。在视频扩散模型最新进展的推动下,我们引入了 V3D,利用预训练视频扩散模型的世界模拟能…

【已解决】MySQL:常用的除法运算+精度处理+除数为0处理

目录 问题现象: 问题分析: 拓展: 1、除法运算: 拓展:MySQL中常用的几种除法运算 1、取整除法 2、浮点数除法 3、取余除法 4、向上取整除法 5、向下取整除法 2、运算结果的精度处理 1.1、浮点数 1.2、总位数 1.3、…

蓝桥杯练习题——健身大调查

在浏览器中预览 index.html 页面效果如下: 目标 完成 js/index.js 中的 formSubmit 函数,用户填写表单信息后,点击蓝色提交按钮,表单项隐藏,页面显示用户提交的表单信息(在 id 为 result 的元素显示&#…

2024年敏捷产品负责人CSPO认证培训

课程名称:Scrum Product Owner CSPO产品负责人认证 课程类型:经理级 课程简介: Scrum Product Owner产品负责人在Scrum产品开发当中扮演“舵手”的角色,他决定产品的愿景、路线图以及投资回报,他需要回答为什么做&am…

【ZooKeeper】2、安装

本文基于 Apache ZooKeeper Release 3.7.0 版本书写 作于 2022年3月6日 14:22:11 转载请声明 下载zookeeper安装包 wget https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3.7.0/apache-zookeeper-3.7.0-bin.tar.gz解压 tar -zxvf apache-zookeeper-3.7.0-b…

OpenCV Steger算法提取条纹中心线

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 Steger 算法是一种常用的图像边缘检测算法,可以用于提取图像中的中心线或边缘信息。它的理论假设是:条纹的亮度是按照高斯分布呈现的,即中心亮两侧渐暗。 其计算过程如下所述: 1、首先,我们需要计算每个点Hess…

汽车制造业供应商管理会面临哪些问题?要如何解决?

汽车行业的供应链是及其复杂的,并且呈全球化分布,企业在知识产权方面的优势很可能是阶段性的。企业需要持续保持领先,将面临巨大的挑战,尽快地将产品推向市场是保持领先的唯一途径。然而,如果没有正确的方式去实现安全…

Flutter 运行 flutter doctor 命令长时间未响应

由于 Flutter 运行 flutter doctor 命令,会从 pub(https://pub.dev/ 类似于 Node.js 的 npm) 上进行资源的下载,如果没有配置国内镜像,可能会由于其服务器在国外导致资源下载慢或者下载不下来,所以出现了运行 flutter doctor 命令…

中国银行信息系统应用架构发展历程

概述: 从 20 世纪 80 年代开始至今,我国银行业信息化历程已 有四十年历史。虽然相对于发达国家来讲,我国银行业务信 息化起步较晚,但发展速度很快, 目前我国一些大型商业银行的信息化程度已经处于全球领先水平。 “银行…