基于深度学习YOLOv8+Pyqt5的工地安全帽头盔佩戴检测识别系统(源码+跑通说明文件)

news2024/11/13 15:32:32

wx供重浩:创享日记
对话框发送:318安全帽
获取完整源码源文件+7000张已标注的数据集+训练好的模型+配置说明文件
可有偿59yuan一对一远程操作配置环境跑通程序


效果展示(图片检测+批量检测+视频检测+摄像头检测)

基于深度学习YOLOv8+Pyqt5的工地安全帽头盔佩戴检测识别系统(源码+跑通说明文件)

在这里插入图片描述

在这里插入图片描述


各文件说明
在这里插入图片描述

模型评价指标

精确度(Precision):这个指标告诉你,系统检测到的对象中,有多少是真正存在的。就像你在一个果园里找苹果,精确度就是你能正确找到的苹果数占你找到的所有“苹果”的比例。

召回率(Recall):这个指标衡量的是,所有真实存在的对象中,有多少被系统正确检测到了。继续果园的例子,召回率就是所有真实苹果中,你找到的苹果所占的比例。

F1分数(F1 Score):这是一个综合考虑精确度和召回率的指标。如果一个系统既有很高的精确度也有很高的召回率,那么它的F1分数就会很高。这就像是你既找到了很多苹果,又确保了几乎所有的苹果都被你找到了。

平均精度(Average Precision, AP):这个指标衡量的是,在不同的置信度阈值下,精确度和召回率的平均表现。置信度可以理解为系统对检测到的对象存在的把握程度。AP越高,表示系统在不同置信度下的表现越稳定。

mAP(Mean Average Precision):这是在多个类别上计算AP后的平均值。如果一个系统需要检测多种类型的对象,比如猫、狗、鸟等,mAP就是这些类别AP值的平均,它提供了一个整体的性能评价。

速度(Speed):虽然不是直接的评价指标,但速度对于实时对象检测系统非常重要。YOLO系列的一个优点就是它的速度非常快,可以在视频流中实时检测对象,而不会有明显的延迟。

模型大小(Model Size):这个指标衡量的是模型的文件大小。在资源有限的设备上,如手机或嵌入式系统,模型大小是一个重要的考虑因素。

泛化能力(Generalization):这个指标衡量的是模型在未见过的数据上的表现。一个好的对象检测系统应该能够在多种环境和条件下都能稳定地工作。

这些指标通常在研究论文或技术报告中被用来比较不同的对象检测系统。在实际应用中,根据具体需求,可能会更关注某些指标。例如,对于需要实时反馈的应用,速度可能比精确度更重要。而对于安全监控系统,精确度和召回率可能更为关键。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在工业和建筑领域,确保工地工作人员正确佩戴安全帽至关重要,以减少工伤事故的发生。然而,传统的人工监管方法效率低下且容易出错。为了提高工地安全管理的效率和准确性,本文提出了一种基于YOLOv8(You Only Look Once version 8)和PyQt5的工地安全帽佩戴检测系统。该系统利用深度学习技术和图形用户界面框架,旨在实时监测并识别工地上的安全帽佩戴情况。

工地安全帽佩戴检测系统的设计和实现如下:

系统设计
数据集准备
首先,需要收集和标注一个包含各种工地环境和工作人员的图像数据集,确保数据集中包含不同角度、光照条件以及各种颜色和样式的安全帽。图像标注需要精确指出工作人员的头部区域和是否佩戴安全帽,以便训练模型识别安全帽佩戴情况。

模型训练
利用准备好的数据集,对YOLOv8模型进行训练。在训练过程中,需要调整超参数,如学习率、批大小和训练周期,以提高检测的准确性。此外,通过数据增强技术,如随机裁剪、旋转和颜色变换,增强模型对复杂工地环境的适应性。

系统实现
系统核心是YOLOv8模型,负责从实时视频流中检测工作人员的安全帽佩戴情况。系统还包括一个基于PyQt5的用户界面,用于展示检测结果和发出警告。当检测到未佩戴安全帽的情况时,系统会通过声音或视觉信号通知安全管理人员。

实时检测
为了实现实时监测,系统必须能够在低延迟下处理视频流。这意味着模型不仅要准确,还要具备高效的推理能力。在实际部署时,可能需要在边缘计算设备上运行模型,以减少对中心服务器的依赖并提高响应速度。

结果与讨论
在测试集上,YOLOv8模型显示出了较高的安全帽佩戴检测准确率。模型能够在多种环境和光照条件下稳定识别佩戴安全帽的工作人员。尽管如此,在处理工作人员头部被遮挡或安全帽与周围环境颜色相似的情况下,模型的性能仍有待提高。

结论
本文提出的基于YOLOv8和PyQt5的工地安全帽佩戴检测系统,能够有效地提升工地安全管理的自动化水平。通过实时监测和即时反馈,该系统有助于提高工地安全规定执行的严格性,保障工作人员的生命安全。未来的工作将致力于进一步提升模型的鲁棒性,并探索更加高效的模型部署方案,以适应更广泛的工地环境。


部分PyQt5可视化代码

# -*- coding: utf-8 -*-
import time
from PyQt5.QtWidgets import QApplication , QMainWindow, QFileDialog, \
    QMessageBox,QWidget,QHeaderView,QTableWidgetItem, QAbstractItemView
import sys
import os
from PIL import ImageFont
from ultralytics import YOLO
sys.path.append('UIProgram')
from UIProgram.UiMain import Ui_MainWindow
import sys
from PyQt5.QtCore import QTimer, Qt, QThread, pyqtSignal,QCoreApplication
import detect_tools as tools
import cv2
import Config
from UIProgram.QssLoader import QSSLoader
from UIProgram.precess_bar import ProgressBar
import numpy as np
# import torch

class MainWindow(QMainWindow):
    def __init__(self, parent=None):
        super(QMainWindow, self).__init__(parent)
        self.ui = Ui_MainWindow()
        self.ui.setupUi(self)
        self.initMain()
        self.signalconnect()

        # 加载css渲染效果
        style_file = 'UIProgram/style.css'
        qssStyleSheet = QSSLoader.read_qss_file(style_file)
        self.setStyleSheet(qssStyleSheet)

    def signalconnect(self):
        self.ui.PicBtn.clicked.connect(self.open_img)
        self.ui.comboBox.activated.connect(self.combox_change)
        self.ui.VideoBtn.clicked.connect(self.vedio_show)
        self.ui.CapBtn.clicked.connect(self.camera_show)
        self.ui.SaveBtn.clicked.connect(self.save_detect_video)
        self.ui.ExitBtn.clicked.connect(QCoreApplication.quit)
        self.ui.FilesBtn.clicked.connect(self.detact_batch_imgs)

    def initMain(self):
        self.show_width = 770
        self.show_height = 480

        self.org_path = None

        self.is_camera_open = False
        self.cap = None

        # self.device = 0 if torch.cuda.is_available() else 'cpu'

        # 加载检测模型
        self.model = YOLO(Config.model_path, task='detect')
        self.model(np.zeros((48, 48, 3)))  #预先加载推理模型
        self.fontC = ImageFont.truetype("Font/platech.ttf", 25, 0)

        # 用于绘制不同颜色矩形框
        self.colors = tools.Colors()

        # 更新视频图像
        self.timer_camera = QTimer()

        # 更新检测信息表格
        # self.timer_info = QTimer()
        # 保存视频
        self.timer_save_video = QTimer()

        # 表格
        self.ui.tableWidget.verticalHeader().setSectionResizeMode(QHeaderView.Fixed)
        self.ui.tableWidget.verticalHeader().setDefaultSectionSize(40)
        self.ui.tableWidget.setColumnWidth(0, 80)  # 设置列宽
        self.ui.tableWidget.setColumnWidth(1, 200)
        self.ui.tableWidget.setColumnWidth(2, 150)
        self.ui.tableWidget.setColumnWidth(3, 90)
        self.ui.tableWidget.setColumnWidth(4, 230)
        # self.ui.tableWidget.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch)  # 表格铺满
        # self.ui.tableWidget.horizontalHeader().setSectionResizeMode(0, QHeaderView.Interactive)
        # self.ui.tableWidget.setEditTriggers(QAbstractItemView.NoEditTriggers)  # 设置表格不可编辑
        self.ui.tableWidget.setSelectionBehavior(QAbstractItemView.SelectRows)  # 设置表格整行选中
        self.ui.tableWidget.verticalHeader().setVisible(False)  # 隐藏列标题
        self.ui.tableWidget.setAlternatingRowColors(True)  # 表格背景交替

        # 设置主页背景图片border-image: url(:/icons/ui_imgs/icons/camera.png)
        # self.setStyleSheet("#MainWindow{background-image:url(:/bgs/ui_imgs/bg3.jpg)}")

    def open_img(self):
        if self.cap:
            # 打开图片前关闭摄像头
            self.video_stop()
            self.is_camera_open = False
            self.ui.CaplineEdit.setText('摄像头未开启')
            self.cap = None

        # 弹出的窗口名称:'打开图片'
        # 默认打开的目录:'./'
        # 只能打开.jpg与.gif结尾的图片文件
        # file_path, _ = QFileDialog.getOpenFileName(self.ui.centralwidget, '打开图片', './', "Image files (*.jpg *.gif)")
        file_path, _ = QFileDialog.getOpenFileName(None, '打开图片', './', "Image files (*.jpg *.jepg *.png)")
        if not file_path:
            return

        self.ui.comboBox.setDisabled(False)
        self.org_path = file_path
        self.org_img = tools.img_cvread(self.org_path)

        # 目标检测
        t1 = time.time()
        self.results = self.model(self.org_path)[0]
        t2 = time.time()
        take_time_str = '{:.3f} s'.format(t2 - t1)
        self.ui.time_lb.setText(take_time_str)

        location_list = self.results.boxes.xyxy.tolist()
        self.location_list = [list(map(int, e)) for e in location_list]
        cls_list = self.results.boxes.cls.tolist()
        self.cls_list = [int(i) for i in cls_list]
        self.conf_list = self.results.boxes.conf.tolist()
        self.conf_list = ['%.2f %%' % (each*100) for each in self.conf_list]

        # now_img = self.cv_img.copy()
        # for loacation, type_id, conf in zip(self.location_list, self.cls_list, self.conf_list):
        #     type_id = int(type_id)
        #     color = self.colors(int(type_id), True)
        #     # cv2.rectangle(now_img, (int(x1), int(y1)), (int(x2), int(y2)), colors(int(type_id), True), 3)
        #     now_img = tools.drawRectBox(now_img, loacation, Config.CH_names[type_id], self.fontC, color)
        now_img = self.results.plot()
        self.draw_img = now_img
        # 获取缩放后的图片尺寸
        self.img_width, self.img_height = self.get_resize_size(now_img)
        resize_cvimg = cv2.resize(now_img,(self.img_width, self.img_height))
        pix_img = tools.cvimg_to_qpiximg(resize_cvimg)
        self.ui.label_show.setPixmap(pix_img)
        self.ui.label_show.setAlignment(Qt.AlignCenter)
        # 设置路径显示
        self.ui.PiclineEdit.setText(self.org_path)

        # 目标数目
        target_nums = len(self.cls_list)
        self.ui.label_nums.setText(str(target_nums))

        # 设置目标选择下拉框
        choose_list = ['全部']
        target_names = [Config.names[id]+ '_'+ str(index) for index,id in enumerate(self.cls_list)]
        # object_list = sorted(set(self.cls_list))
        # for each in object_list:
        #     choose_list.append(Config.CH_names[each])
        choose_list = choose_list + target_names

        self.ui.comboBox.clear()
        self.ui.comboBox.addItems(choose_list)

        if target_nums >= 1:
            self.ui.type_lb.setText(Config.CH_names[self.cls_list[0]])
            self.ui.label_conf.setText(str(self.conf_list[0]))
        #   默认显示第一个目标框坐标
        #   设置坐标位置值
            self.ui.label_xmin.setText(str(self.location_list[0][0]))
            self.ui.label_ymin.setText(str(self.location_list[0][1]))
            self.ui.label_xmax.setText(str(self.location_list[0][2]))
            self.ui.label_ymax.setText(str(self.location_list[0][3]))
        else:
            self.ui.type_lb.setText('')
            self.ui.label_conf.setText('')
            self.ui.label_xmin.setText('')
            self.ui.label_ymin.setText('')
            self.ui.label_xmax.setText('')
            self.ui.label_ymax.setText('')

        # # 删除表格所有行
        self.ui.tableWidget.setRowCount(0)
        self.ui.tableWidget.clearContents()
        self.tabel_info_show(self.location_list, self.cls_list, self.conf_list,path=self.org_path)

if __name__ == "__main__":
    app = QApplication(sys.argv)
    win = MainWindow()
    win.show()
    sys.exit(app.exec_())

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1527700.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【HTTP】面试题整理

HTTP:什么是队头阻塞以及怎么解决? 队头阻塞(Head-of-Line Blocking) 计算机网络中的一个概念,特别是在处理HTTP请求时。当多个HTTP请求被发送到一个服务器,并且这些请求被放置在一个队列中等待处理时&…

uniapp微信小程序随机生成canvas-id报错?

uniapp微信小程序随机生成canvas-id报错? 文章目录 uniapp微信小程序随机生成canvas-id报错?效果图遇到问题解决 场景: 子组件,在 mounted 绘制 canvas;App、H5端正常显示,微信小程序报错; 效…

【Map和Set】(二叉搜索树 查找操作 插入操作 删除操作 Map的使用 Map.Entry<K, V> Set的说明)

文章目录 二叉搜索树查找操作插入操作删除操作 Map的使用Map.Entry<K, V> Set的说明 二叉搜索树 二叉搜索树&#xff1a;是空树或者是具有下面性质的二叉树 若左子树不为空,则左子树上所有节点的值都小于根节点的值;若右子树不为空,则右子树上所有节点的值都大于根节点的…

CSS案例-5.margin产品模块练习

效果1 相关数据 整体长&#xff1a;298px&#xff0c;高&#xff1a;415px 效果2 知识点 外边距margin 块级盒子水平居中 条件&#xff1a; 必须有宽度左右外边距设为auto 三种写法&#xff1a; margin-left&#xff1a;auto&#xff1b;margin-right&#xff1a;auto&…

数据可视化-ECharts Html项目实战(3)

在之前的文章中&#xff0c;我们学习了如何创建堆积折线图&#xff0c;饼图以及较难的瀑布图并更改图标标题。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 …

服务器病毒木马通用排查处理应急响应流程

目录 一、勒索病毒发作的特征 二、勒索病毒的应急响应 三、勒索病毒预防与事后加固 一、勒索病毒发作的特征 如果发现大量统一后缀的文件&#xff1b;发现勒索信在Linux/home、/usr等目录&#xff0c;在Windows 桌面或者是被加密文件的文件夹下。如果存在以上特…

01|模型IO:输入提示、调用模型、解析输出

Model I/O 可以把对模型的使用过程拆解成三块&#xff0c;分别是输入提示&#xff08;对应图中的Format&#xff09;、调用模型&#xff08;对应图中的Predict&#xff09;和输出解析&#xff08;对应图中的Parse&#xff09;。这三块形成了一个整体&#xff0c;因此在LangCha…

【Ubuntu】Ubuntu的安装和配置

下载ubuntu镜像 https://releases.ubuntu.com/22.04.4/ubuntu-22.04.4-desktop-amd64.iso 一、Ubuntu安装 1.新建虚拟机 1.1按照它的提示创建用户&#xff1b;后面一直下一步就好 2.启动Ubuntu虚拟机 2.1设置为中文键盘 2.2默认即可&#xff1b;若是有低需求也可以选择最小…

YoloV8改进策略:Block改进|焦点调制网络

摘要 FocalNets是一个新型的神经网络架构&#xff0c;它的核心特点是用焦点调制模块完全取代了自注意力&#xff08;SA&#xff09;机制&#xff0c;用于在视觉任务中建模令牌&#xff08;token&#xff09;之间的交互。这种架构的设计旨在提高模型的可解释性&#xff0c;并在…

Tomcat:Session ID保持会话

目录 前言 ​一、部署环境 二、部署nginx反向代理服务器 三、部署tomcat服务器1 四、部署tomcat服务器2 五、客户端测试&#xff08;Session ID不断变动&#xff09; 六、配置Session ID会话保持 七、客户端测试&#xff08;Session ID保持&#xff09; 前言 此次实验…

拌合楼管理系统开发(六) 海康威视摄像头调用拍照

前言&#xff1a;无人值守过磅摄像头拍照 无人值守过程很重要的一个环节就是车辆过磅等车辆到到磅上指定位置后&#xff0c;触发车牌识别&#xff0c;以及车辆前后左右四个方位摄像头拍照&#xff0c;并存入到系统中。 一、支持设备&#xff1a; 建议都采用600万像素以上的海康…

jQuery+CSS3自动轮播焦点图特效源码

jQueryCSS3自动轮播焦点图特效源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面 下载地址 jQueryCSS3自动轮播焦点图特效源码

javaweb day20

dml 写法 更新数据 写法 删除 写法

Java并发编程之ReactiveSteams

Reactive Steams 一、Reactive Steams介绍 在聊Reactive Steams之前&#xff0c;先了解一下Reactive Programming&#xff08;反应式/响应式编程&#xff09;。为了解决异步编程中出现的各种问题&#xff0c;程序员们提出了各种的思路去解决这些问题&#xff0c;这些解决问题…

docker init 生成Dockerfile和docker-compose.yml —— 筑梦之路

官网&#xff1a;https://docs.docker.com/engine/reference/commandline/init/ 简介 docker init是一个命令行实用程序&#xff0c;可帮助初始化项目中的 Docker 资源。.dockerignore它根据项目的要求创建 Dockerfile、Compose 文件。这简化了为项目配置 Docker 的过程&#…

Linux 文件系统:文件描述符、管理文件

目录 一、三个标注输入输出流 二、文件描述符fd 1、通过C语言管理文件—理解文件描述符fd 2、文件描述符实现原理 3、文件描述符0、1、2 4、总结 三、如何管理文件 1、打开文件的过程 2、内核空间的结构 struct task_struct&#xff08;PCB&#xff09; struct file…

html5播放flv视频

参考&#xff1a;flv-h265 - npmHTML5 FLV Player. Latest version: 1.7.0, last published: 6 months ago. Start using flv-h265 in your project by running npm i flv-h265. There are no other projects in the npm registry using flv-h265.https://www.npmjs.com/packag…

java类的定义及使用

1、类的定义 &#xff08;1&#xff09;类的重要性&#xff1a;是Java程序的基本组成单位&#xff1b; &#xff08;2&#xff09;类是什么&#xff1a;是对现实生活中一类具有共同属性和行为的事物的抽象&#xff0c;确定对象将会拥有的属性和行为&#xff1b; &#xff08…

卷积篇 | YOLOv8改进之C2f模块融合SCConv | 即插即用的空间和通道维度重构卷积

前言:Hello大家好,我是小哥谈。SCConv是一种用于减少特征冗余的卷积神经网络模块。相对于其他流行的SOTA方法,SCConv可以以更低的计算成本获得更高的准确率。它通过在空间和通道维度上进行重构,从而减少了特征图中的冗余信息。这种模块的设计可以提高卷积神经网络的性能。本…

AI时代,Matter如何融入与服务中国智能家居市场,助力中国企业出海?

随着智能家居产业的飞速发展&#xff0c;丰富多样的智能家居产品为消费者带来了便利的同时&#xff0c;因为不同品牌、不同产品之间的协议与标准不统一&#xff0c;导致消费者体验产生割裂&#xff0c;本来想买个“智能”家居&#xff0c;结果买了个“智障”家居&#xff0c;这…