机器学习 --- 模型评估、选择与验证

news2025/1/23 9:24:19

Java实训代码、答案,如果能够帮到您,希望可以点个赞!!! 

如果有问题可以csdn私聊或评论!!!感谢您的支持

第1关:为什么要有训练集与测试集

1、下面正确的是?( D

A、将手头上所有的数据拿来训练模型,预测结果正确率最高的模型就是我们所要选的模型。

B、将所有数据中的前百分之70拿来训练模型,剩下的百分之30作为测试集,预测结果正确率最高的模型就是我们所要选的模型。

C、将所有数据先随机打乱顺序,一半用来训练模型,一半作为测试集,预测结果正确率最高的模型就是我们所要选的模型。

D、将所有数据先随机打乱顺序,百分之80用来训练模型,剩下的百分之20作为测试集,预测结果正确率最高的模型就是我们所要选的模型。

2、训练集与测试集的划分对最终模型的确定有无影响?( A )

A、有

B、无

第2关:欠拟合与过拟合

1、请问,图中A与B分别处于什么状态?( B

A、欠拟合,欠拟合

B、欠拟合,过拟合

C、过拟合,欠拟合

D、过拟合,过拟合

2、如果一个模型在训练集上正确率为99%,测试集上正确率为60%。我们应该怎么做?( ABD )

A、加入正则化项

B、增加训练样本数量

C、增加模型复杂度

D、减少模型复杂度

第3关:偏差与方差

如果一个模型,它在训练集上正确率为85%,测试集上正确率为80%,则模型是过拟合还是欠拟合?其中,来自于偏差的误差为?来自方差的误差为?( B

A、欠拟合,5%,5%

B、欠拟合,15%,5%

C、过拟合,15%,15%

D、过拟合,5%,5%

第4关:验证集与交叉验证

1、假设,我们现在利用5折交叉验证的方法来确定模型的超参数,一共有4组超参数,我们可以知道,5折交叉验证,每一组超参数将会得到5个子模型的性能评分,假设评分如下,我们应该选择哪组超参数?( D

A、子模型1:0.8 子模型2:0.7 子模型3:0.8 子模型4:0.6 子模型5:0.5

B、子模型1:0.9 子模型2:0.7 子模型3:0.8 子模型4:0.6 子模型5:0.5

C、子模型1:0.5 子模型2:0.6 子模型3:0.7 子模型4:0.6 子模型5:0.5

D、子模型1:0.8 子模型2:0.8 子模型3:0.8 子模型4:0.8 子模型5:0.6

2、下列说法正确的是?( BCD )

A、相比自助法,在初始数据量较小时交叉验证更常用。

B、自助法对集成学习方法有很大的好处

C、使用交叉验证能够增加模型泛化能力

D、在数据难以划分训练集测试集时,可以使用自助法

第5关:衡量回归的性能指标

下列说法正确的是?( AB )

A、相比MSE指标,MAE对噪声数据不敏感

B、RMSE指标值越小越好

C、R-Squared指标值越小越好

D、当我们的模型不犯任何错时,R-Squared值为0

第6关:准确度的陷阱与混淆矩阵

import numpy as np

def confusion_matrix(y_true, y_predict):
    '''
    构建二分类的混淆矩阵,并将其返回
    :param y_true: 真实类别,类型为ndarray
    :param y_predict: 预测类别,类型为ndarray
    :return: shape为(2, 2)的ndarray
    '''

    #********* Begin *********#
    def TN(y_true, y_predict):
        return np.sum((y_true == 0) & (y_predict == 0))
    def FP(y_true, y_predict):
        return np.sum((y_true == 0) & (y_predict == 1))
    def FN(y_true, y_predict):
        return np.sum((y_true == 1) & (y_predict == 0))
    def TP(y_true, y_predict):
        return np.sum((y_true == 1) & (y_predict == 1))
    return np.array([
        [TN(y_true, y_predict), FP(y_true, y_predict)],
        [FN(y_true, y_predict), TP(y_true, y_predict)]
    ])
    #********* End *********#

第7关:精准率与召回率 

import numpy as np

def precision_score(y_true, y_predict):
    '''
    计算精准率并返回
    :param y_true: 真实类别,类型为ndarray
    :param y_predict: 预测类别,类型为ndarray
    :return: 精准率,类型为float
    '''

    #********* Begin *********#
    def TP(y_true, y_predict):
        return np.sum((y_true ==1)&(y_predict == 1))
    def FP(y_true,y_predict):
        return np.sum((y_true ==0)&(y_predict==1))
    tp =TP(y_true, y_predict)
    fp =FP(y_true, y_predict)
    try:
        return tp /(tp+fp)
    except:
        return 0.0
    #********* End *********#


def recall_score(y_true, y_predict):
    '''
    计算召回率并召回
    :param y_true: 真实类别,类型为ndarray
    :param y_predict: 预测类别,类型为ndarray
    :return: 召回率,类型为float
    '''

    #********* Begin *********#
    def FN(y_true, y_predict):
        return np.sum((y_true ==1)&(y_predict == 0))
    def TP(y_true,y_predict):
        return np.sum((y_true ==1)&(y_predict==1))
    fn =FN(y_true, y_predict)
    tp =TP(y_true, y_predict)
    try:
        return tp /(tp+fn)
    except:
        return 0.0

    
    #********* End *********#

第8关:F1 Score 

import numpy as np

def f1_score(precision, recall):
    '''
    计算f1 score并返回
    :param precision: 模型的精准率,类型为float
    :param recall: 模型的召回率,类型为float
    :return: 模型的f1 score,类型为float
    '''

    #********* Begin *********#
    try:
        return 2*precision*recall / (precision+recall)
    except:
        return 0.0
    #********* End ***********#

第9关:ROC曲线与AUC 

import numpy as np

def calAUC(prob, labels):
    '''
    计算AUC并返回
    :param prob: 模型预测样本为Positive的概率列表,类型为ndarray
    :param labels: 样本的真实类别列表,其中1表示Positive,0表示Negtive,类型为ndarray
    :return: AUC,类型为float
    '''

    #********* Begin *********#
    a= list(zip(prob,labels))
    rank =[values2 for values1,values2 in sorted(a, key=lambda x:x[0])]
    rankList=[i+1 for i in range(len(rank))if rank[i] ==1]
    posNum =0
    negNum =0
    for i in range(len(labels)):
        if(labels[i]==1):
            posNum+=1
        else:
            negNum+=1
    auc= (sum(rankList)-(posNum*(posNum+1))/2)/(posNum*negNum)
    return auc       
    #********* End *********#

第10关:sklearn中的分类性能指标 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

def classification_performance(y_true, y_pred, y_prob):
    '''
    返回准确度、精准率、召回率、f1 Score和AUC
    :param y_true:样本的真实类别,类型为`ndarray`
    :param y_pred:模型预测出的类别,类型为`ndarray`
    :param y_prob:模型预测样本为`Positive`的概率,类型为`ndarray`
    :return:
    '''

    #********* Begin *********#
    return accuracy_score(y_true, y_pred),precision_score(y_true, y_pred),recall_score(y_true, y_pred),f1_score(y_true, y_pred),roc_auc_score(y_true, y_prob)
    #********* End *********#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1525317.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(每日持续更新)jdk api之StringReader基础、应用、实战

博主18年的互联网软件开发经验,从一名程序员小白逐步成为了一名架构师,我想通过平台将经验分享给大家,因此博主每天会在各个大牛网站点赞量超高的博客等寻找该技术栈的资料结合自己的经验,晚上进行用心精简、整理、总结、定稿&…

LeetCode 面试经典150题 121.买卖股票的最佳时机

题目: 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易…

数学建模——蒙特卡洛法

目录 1.介绍2.可以做的题型3.实战3.1求pi的值3.2求定积分x^2 的值 参加了大大小小很多场比赛了,但是都是混子,但还是打算记录一下吧,系统认真过一遍。后续功力深厚,会拓展写的文章,目前是干货,一些背景啥的…

蓝桥杯刷题(十)

1.翻转 代码 输入数据,每组数据进行比较,j的范围掐头去尾,若a[j]b[j],继续,若出现010,101子串则改成000,111,遍历完后比较a是否等于b,相同则输出次数,不同则输出-1。 for _ in ran…

CSS概念及入门

文章目录 1. CSS 概念及入门1.1. 简介1.2. 组成1.2.1. 选择器1.2.2. 属性 1.3. 区别 2. CSS 引入方式2.1. 行内样式2.1.1. 语法2.1.2. 特点 2.2. 内部样式2.2.1. 语法2.2.2. 特点 2.3. 外部样式2.3.1. 特点 2.4. 三种引入优先级 1. CSS 概念及入门 1.1. 简介 CSS 的全称为&am…

打破传统,拥抱未来:解锁企业数字化转型成功的11把金钥匙

数字化转型是一个持续的过程,需要企业不断地适应新技术和市场变化。企业如何提高转型成功的可能性,并在竞争激烈的市场中保持领先地位。今天我们来解锁企业数字化转型成功的11把金钥匙。 清晰的战略目标: 首先,企业需要明确数字化…

Python基础(八)之流程控制

Python基础(八)之流程控制 Python控制流程分为三种接口: 顺序结构选择结构循环结构 1、顺序结构 程序代码自上而下运行,逐条执行每一条Python代码,不重复执行任何代码,也不会跳过任何代码。 当语句与语…

基于JavaWeb+SSM+Vue“鼻护灵”微信小程序系统的设计和实现

基于JavaWebSSMVue“鼻护灵”微信小程序系统的设计和实现 滑到文末获取源码Lun文目录前言主要技术系统设计功能截图 滑到文末获取源码 Lun文目录 摘 要 3 Abstract 1 1 绪 论 1 1.1研究背景 1 工作的效率。 1 1.2 研究意义 1 1.3研究现状 1 1.4本文组织结构 2 2 技术介绍 3 2…

揭秘Facebook:数字世界的引领者

在当今数字化社会中,Facebook作为全球最大的社交媒体平台之一,扮演着引领者的角色。它不仅改变了人们的社交方式,还深刻影响着信息传播、商业模式和社会责任。本文将深入揭秘Facebook背后的故事,探索其在数字世界中的引领地位和影…

腾轩科技传媒教你如何精准制定营销策划方案,网络营销八法攻略!

整合营销是一种利用各种营销手法和渠道,将企业产品或服务全方位推广给目标消费者的营销方式。整合营销的目的是通过协调不同的营销手段和渠道,实现更高效的品牌传播和营销效果。腾轩科技传媒教你如何精准制定营销策划方案,网络营销八法攻略&a…

关 于 重 燃 学 习 的 热 情

3月1日是我回学校的第一天。经历了长达8个月在家的昏暗时刻,我这10天的感觉和在家的感觉发生了翻天覆地的变化,最明显的莫过于学习状态的改变。 倒不是说在家学的不好,而是说在学校,我对学习的整体感觉,以及专注程度&…

PyTorch深度学习实战(39)——小样本学习

PyTorch深度学习实战(39)——小样本学习 0. 前言1. 小样本学习简介2. 孪生网络2.1 模型分析2.2 数据集分析2.3 构建孪生网络 3. 原型网络3. 关系网络小结系列链接 0. 前言 小样本学习 (Few-shot Learning) 旨在解决在训练集中只有很少样本的情况下进行分…

边缘计算+WEB端应用融合:AI行为识别智能监控系统搭建指南 -- 云端系统数据库设计(五)

专栏目录 边缘计算WEB端应用融合:AI行为识别智能监控系统搭建指南 – 整体介绍(一) 边缘计算WEB端应用融合:AI行为识别智能监控系统搭建指南 – 边缘设备图像识别及部署(二) 边缘计算WEB端应用融合&#xf…

不能访问此共享文件夹,因为你组织的安全策略阻止未经身份验证的来宾访问

今天新建共享发现了这个问题,用了网上的组策略之后还是不能访问共享 最后发现原因是共享设置中选择了无密码登录 选择有密码保护的共享,客户端输入ip后,用户名输入Administrator,密码为空(我的文件服务器是联想的win1…

LabVIEW飞机液压基础试验台测试系统

LabVIEW飞机液压基础试验台测试系统 为解决飞机液压基础实验台人工控制操作复杂、测试时间长、测试流程易出错等问题,开发了一套基于LabVIEW的飞机液压基础试验台测试系统。该系统通过计算机控制,实现了高度自动化的测试流程,有效提高了测试…

【tls招新web部分题解】

emowebshell (php7.4.21版本漏洞) 非预期 题目提示webshell,就直接尝试一下常见的后门命名的规则 如 shell.php这里运气比较好,可以直接shell.php就出来 要是不想这样尝试的话,也可以直接dirsearch进行目录爆破 然后在phpinfo中直接搜素c…

【Spring 篇】SpringMVC拦截器:给你的应用增添色彩

嗨,亲爱的小伙伴们!欢迎来到这段关于SpringMVC拦截器的奇妙之旅。今天我们要一探究竟,深入挖掘拦截器的神秘面纱,看看它是如何在你的应用中悄然发挥作用的。别怕,我会用最通俗易懂的语言,一步一步带你走进这…

Python-GEE绘制DEM精美图片

目录 上传矢量和DEM获取添加颜色条参考文章 先连接上GEE的自己的项目 import ee import geemap geemap.set_proxy(port33210) ee.Authenticate() ee.Initialize(projecta-flyllf0313)上传矢量和DEM获取 使用Google Earth Engine(GEE)和Google Earth Eng…

把软件加入开机自启动

注意这个方法最佳效果是适用于打开软件后,关闭窗口不会停止服务 例如 nginx 1.把nginx的快捷方式放到如图所示的文件夹下 C:\Users\KIA_27\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup 注意KIA_27应改为你自己的用户名

Linux查看硬件型号详细信息

1.查看CPU (1)使用cat /proc/cpuinfo或lscpu (2)使用dmidecode -i processor Dmidecode 这款软件允许你在 Linux 系统下获取有关硬件方面的信息。Dmidecode 遵循 SMBIOS/DMI 标准,其输出的信息包括 BIOS、系统、主板、…