【AI】Ubuntu系统深度学习框架的神经网络图绘制

news2024/11/24 20:41:03

一、Graphviz

在Ubuntu上安装Graphviz,可以使用命令行工具apt进行安装。

安装Graphviz的步骤相对简单。打开终端,输入以下命令更新软件包列表:`sudo apt update`。之后,使用命令`sudo apt install graphviz`来安装Graphviz软件包。为了验证安装是否成功,可以运行`dot -V`命令检查版本信息。若想在conda环境中使用Graphviz,可以使用`conda install graphviz`命令进行安装。

Graphviz的使用包括编写dot脚本、编译生成图像两个主要步骤。

编写dot脚本是使用Graphviz的第一步。可以用任何文本编辑器创建一个.dot文件,例如使用vim编辑器创建一个名为text.dot的文件,并在其中编写图形定义语句。接着,利用Graphviz提供的dot工具将该文件编译成想要的图像格式,如PNG或PDF。编译命令为`dot -Tpng test.dot -o test.png`,其中`-T`选项指定输出格式,`-o`选项指定输出文件名。此外,如果是在Python环境下使用Graphviz,可以通过安装pygraphviz库来与Graphviz进行交互。

总得来说,在Ubuntu系统上安装和使用Graphviz主要是通过命令行安装软件包,然后编写dot脚本并使用dot工具将脚本编译成图像。Graphviz是一个非常灵活的图形可视化工具,支持多种输出格式,并且可以在多种开发环境中使用。

二、PyTorch

PyTorch本身没有内置功能来绘制神经网络架构的图。然而,有一些第三方库可以帮助我们完成这项工作,比如`torchviz`和`hiddenlayer`。下面我将使用`torchviz`库来展示如何绘制一个简单的神经网络。
首先,需要安装`torchviz`库和graphviz。

python -m pip install torchviz

一旦安装完成,可以用以下代码来创建一个简单的神经网络并使用`torchviz`来绘制它的结构图:

import torch
import torch.nn as nn
from torchviz import make_dot

# 定义一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x

# 创建网络和一个假的输入
model = SimpleNet()
dummy_input = torch.randn(1, 10)

# 使用 model 和 dummy_input 来生成一个图
vis_graph = make_dot(model(dummy_input), params=dict(model.named_parameters()))

# 输出图到一个文件或显示它(需要Graphviz的支持)
vis_graph.view()

在这段代码中,首先我们定义了一个简单的神经网络`SimpleNet`,它包含一个输入层(`fc1`)、一个ReLU激活函数(`relu`)和一个输出层(`fc2`)。使用这个网络模型和一个随机生成的输入`dummy_input`,我们用`make_dot`方法创建了一个可视化图。`make_dot`方法返回的对象可以调用`view`方法来展示图像,或者可以保存它到一个文件中。
请注意,`torchviz`是一个轻量级的工具,它适用于小型到中型的网络可视化。对于复杂的网络,它的显示可能会非常混乱。而且,`torchviz`不会给出太多样式化的选项;它主要是为了呈现计算图的结构,而不是为了创作精细的架构示意图。如果想要更复杂的可视化功能,可能需要探索其他工具,比如`Netron`。

三、Keras

在Keras中,可以使用keras.utils.plot_model函数来绘制神经网络图。这个函数将神经网络的架构可视化为一个图形,其中节点代表层,边表示数据流动的方向。以下是一个使用Keras绘制神经网络图的例子:

首先,确保已经安装了Keras库。

然后,可以创建一个简单的Keras模型并使用plot_model函数来绘制它:

from keras.models import Sequential  
from keras.layers import Dense  
from keras.utils import plot_model  
 
# 创建一个简单的序贯模型  
model = Sequential()  
model.add(Dense(32, activation='relu', input_shape=(10,)))  
model.add(Dense(1, activation='sigmoid'))  
 
# 编译模型  
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])  
 
# 绘制模型图  
plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)

在这个例子中,我们创建了一个简单的序贯模型,它包含两个全连接层(Dense层)。plot_model函数被用来生成模型的可视化图,并将其保存为model_plot.png文件。参数show_shapes=True会在图中显示每一层输出的形状,而show_layer_names=True则会显示层的名字。

运行这段代码后,应该会在脚本所在的目录下找到一个名为model_plot.png的图片文件,它展示了神经网络模型的结构。

请注意,plot_model函数依赖于matplotlib和pydot等库来生成图形。如果没有安装这些库,可能需要先安装它们:

python -m pip install matplotlib pydot

此外,由于pydot依赖于Graphviz软件,可能还需要在系统上安装Graphviz。

安装Graphviz的具体步骤取决于操作系统。例如,在Ubuntu上,可以使用以下命令安装:

sudo apt-get install graphviz

安装完这些依赖后,应该就能成功使用plot_model函数来绘制Keras神经网络图了。


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1522397.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

挑战杯 机器视觉人体跌倒检测系统 - opencv python

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉人体跌倒检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数&…

前端之CSS 创建css--行内引入、内联样式、外联样式

创建css有三种创建样式&#xff0c;行内引入、内联引入、外联引入。 行内引入 在行内标签引入 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>行内样式</title> </head> <body>…

【安全类书籍-3】XSS跨站脚剖析与防御

目录 内容简介 作用 下载地址 内容简介 这本书涵盖以下几点: XSS攻击原理:解释XSS是如何利用Web应用未能有效过滤用户输入的缺陷,将恶意脚本注入到网页中,当其他用户访问时被执行,实现攻击者的目的,例如窃取用户会话凭证、实施钓鱼攻击等。 XSS分类:分为存储型XSS(…

单片机FLASH深度解析和编程实践(下)

本篇文章将同大家分享单片机FLASH编程的相关寄存器和寄存器操作及库函数操作。本篇文章依然以STM32单片机为例进行解析。有关FLASH的基本原理和实现方法&#xff0c;大家可以参考上一篇文章&#xff1a;单片机FLASH深度解析和编程实践&#xff08;上&#xff09;-CSDN博客 目录…

ChatGPT编程—实现小工具软件(文件查找和筛选)

ChatGPT编程—实现小工具软件(文件查找和筛选) 今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能&#xff1a;根据特定需求结合通配符和其他条件来进行文件查找和筛选。在这个例子中&#xff0c;我们将创建一个函数find_files&#xff0c;它接受用户输入的…

solr/ES 分词插件Jcseg设置自定义词库

步骤&#xff1a; 1、找到配置文件jcseg-core/target/classes/jcseg.properties修改配置&#xff1a; 下载地址: https://gitee.com/lionsoul/jcseg#5-如何自定义使用词库 lexicon.path {jar.dir}/../custom-word 设置lexicon路径&#xff0c;我们这个配置可以自定义&#xf…

Java 与 Go:可变数组

可变数组&#xff08;也称为动态数组&#xff09;是一种可以在运行时动态增加或减少其大小的数据结构。由于其动态分配大小&#xff0c;灵活性增删改查&#xff0c;动态地管理内存&#xff08;在需要时动态分配内存空间&#xff0c;以适应数据结构的大小变化&#xff0c;而不会…

NCV1117ST50T3G线性稳压器芯片中文资料规格书PDF数据手册引脚图图片价格参数

产品概述&#xff1a; NCP1117系列为低压差&#xff08;LDO&#xff09;正向线性电压稳压器&#xff0c;能够提供超过1.0A的输出电流&#xff0c;800mA时温度范围内最大压差为1.2V。这一系列包括八个固定输出电压&#xff1a;1.5V、1.8V、2.0V、2.5V、2.85V、3.3V、5.0V 和 12…

​​SQLiteC/C++接口详细介绍之sqlite3类(十一)

返回目录&#xff1a;SQLite—免费开源数据库系列文章目录 上一篇&#xff1a;​​SQLiteC/C接口详细介绍之sqlite3类&#xff08;十&#xff09; 下一篇&#xff1a;​​SQLiteC/C接口详细介绍之sqlite3类&#xff08;十二&#xff09;&#xff08;未发表&#xff09; 33.sq…

【RS422】基于未来科技FT4232HL芯片的多波特率串口通信收发实现

功能简介 串行通信接口常常用于在计算机和低速外部设备之间传输数据。串口通信存在多种标准&#xff0c;以RS422为例&#xff0c;它将数据分成多个位&#xff0c;采用异步通信方式进行传输。   本文基于Xilinx VCU128 FPGA开发板&#xff0c;对RS422串口通信进行学习。   根…

openlayers 入门教程(二):map 篇

还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#xff0c;webgl&#xff0c;ech…

基于CNN多阶段图像超分+去噪(超级简单版)

这是之前的一项工作&#xff0c;非常简单&#xff0c;简单的复现了两个算法&#xff0c;然后把它们串起来了。 可执行的程序链接&#xff1a;CSDN; Github 我们分成两部分进行讲解&#xff1a; 1. 图像去噪 1.1 基本思路 图像的去噪工作基于很普通的CNN去噪&#xff0c;效…

Java基础 - 9 - 集合进阶(二)

一. Collection的其他相关知识 1.1 可变参数 可变参数就是一种特殊形参&#xff0c;定义在方法、构造器的形参列表里&#xff0c;格式是&#xff1a;数据类型…参数名称; 可变参数的特点和好处 特点&#xff1a;可以不传数据给它&#xff1b;可以传一个或者同时传多个数据给…

2核4g服务器够用吗?

2核4G服务器够用吗&#xff1f;够用。阿腾云以2核4G5M服务器搭建网站为例&#xff0c;5M带宽下载速度峰值可达640KB/秒&#xff0c;阿腾云以搭建网站为例&#xff0c;假设优化后平均大小为60KB&#xff0c;则5M带宽可支撑10个用户同时在1秒内打开网站&#xff0c;并发数为10&am…

Github Copilot 工具,无需账号,一键激活

① 无需账号&#xff0c;100%认证成功&#xff01;0风险&#xff0c;可联网可更新&#xff0c;&#xff0c;支持copilot版本升级&#xff0c;支持chat ② 支持windows、mac、linux系统等设备 ③一号通用&#xff0c;支持所有IDE(AppCode,CLion,DataGrip,GoLand,IntelliJ IDEA …

基于FPGA的光纤通信系统设计

文章目录 光纤通信系统的组成发送端FPGA端口定义状态机设计代码示例 接收端功能模块端口定义状态机设计 光纤通信系统的组成 发送端FPGA 发送控制逻辑、数据编码、校验码生成、缓存控制、时钟控制 端口定义 状态机设计 代码示例 接收端功能模块 接收端控制逻辑、数据解码、…

【PHP + 代码审计】函数详解

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收…

ArcGIS分享图层数据的最佳方法

在工作中&#xff0c;经常需要将图层数据分享给其他人。 如下图所示&#xff0c;需要分享的是【CJDCQ】和【GHDLTB】&#xff0c;图层带有符号系统&#xff1a; 一、分享gdb数据库及lyr文件 分享数据自然要找到源数据&#xff1a; 但是&#xff0c;gdb数据是不带符号系统的&a…

Git版本管理--远程仓库

前言&#xff1a; 本文记录学习使用 Git 版本管理工具的学习笔记&#xff0c;通过阅读参考链接中的博文和实际操作&#xff0c;快速的上手使用 Git 工具。 本文参考了引用链接博文里的内容。 引用: 重学Git-Git远程仓库管理_git remote add origin-CSDN博客 Git学习笔记&am…

数据结构 之 二叉树

&#x1f389;欢迎大家观看AUGENSTERN_dc的文章(o゜▽゜)o☆✨✨ &#x1f389;感谢各位读者在百忙之中抽出时间来垂阅我的文章&#xff0c;我会尽我所能向的大家分享我的知识和经验&#x1f4d6; &#x1f389;希望我们在一篇篇的文章中能够共同进步&#xff01;&#xff01;&…