【四 (4)数据可视化之 Ploty Express常用图表及代码实现 】

news2025/1/11 16:53:23

目录

    • 文章导航
    • 一、介绍
    • 二、安装Plotly Express
    • 三、导入Plotly Express
    • 四、占比类图表
      • 1、饼图
      • 2、环形图
      • 3、堆叠条形图
      • 4、百分比堆叠条形图
    • 五、比较排序类
      • 1、条形图
      • 2、漏斗图
      • 3、面积漏斗图
    • 六、趋势类图表
      • 1、折线图
      • 2、多图例折线图
      • 3、分列折线图
      • 4、面积图
      • 5、多图例面积图
    • 七、频率分布类
      • 1、直方图
      • 2、箱线图
    • 八、关系类图表
      • 1、散点图
      • 2、分列散点图
      • 3、气泡图
      • 4、热力图
      • 5、成对关系图

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、介绍

plotly是一个基于javascript的绘图库,python语言对相关参数进行了封装,ploty默认是生成HTML网页文件,通过浏览器查看,也可以在jupyter notebook中显示。

二、安装Plotly Express

pip install plotly

三、导入Plotly Express

import plotly.express as px

四、占比类图表

1、饼图

import plotly.express as px  
import pandas as pd  
  
# 假设我们有以下数据  
data = {  
    '类别': ['类别A', '类别B', '类别C', '类别D'],  
    '值': [20, 30, 15, 35]  
}  
df = pd.DataFrame(data)  
  
# 绘制饼图  
fig = px.pie(df, values='值', names='类别', title='饼图示例')  

fig.update_traces(textposition='inside', textinfo='percent+label')  
fig.show()

在这里插入图片描述

2、环形图

import plotly.express as px  
import pandas as pd  

# 环形图其实就是带孔的饼图  
fig = px.pie(df, values='值', names='类别', title='环形图示例', hole=.3)  
fig.update_layout(  
    font_family="SimHei",  
    title_font_size=16,  
    legend_title_text='类别',  
    legend_font_size=12  
)  
fig.update_traces(textposition='inside', textinfo='percent+label')  
fig.show()

在这里插入图片描述

3、堆叠条形图

import plotly.express as px  
import pandas as pd  
# 假设我们有以下数据,包含多个分类和它们的值  
data = {  
    '年份': ['2020', '2020', '2021', '2021'],  
    '类别': ['A', 'B', 'A', 'B'],  
    '值': [10, 15, 20, 25]  
}  
df = pd.DataFrame(data)  
  
# 绘制堆叠条形图  
fig = px.bar(df, x='年份', y='值', color='类别', barmode='stack', title='堆叠条形图示例')    

def set_text(trace):  
    trace.text = [f"{val:.1f}" for val in trace.y]  
    trace.textposition = 'outside'  
  
fig.for_each_trace(set_text)  
fig.show()

在这里插入图片描述

4、百分比堆叠条形图

import plotly.express as px  
import pandas as pd  
  
# 假设数据  
data = {  
    '年份': ['2020', '2020', '2021', '2021'],  
    '类别': ['A', 'B', 'A', 'B'],  
    '值': [10, 15, 20, 25]  
}  
df = pd.DataFrame(data)  
  
# 计算每个年份的总值,用于计算百分比  
df['总值'] = df.groupby('年份')['值'].transform('sum')  
df['百分比'] = (df['值'] / df['总值']) * 100  
  
# 绘制堆叠条形图  
fig = px.bar(df, x='年份', y='百分比', color='类别', barmode='stack', title='百分比堆叠条形图示例')  
  
 
  
# 遍历每个轨迹并设置文本  
def set_text(trace):  
    trace.text = [f"{val:.1f}%" for val in trace.y]  
    trace.textposition = 'outside'  
  
fig.for_each_trace(set_text)  
  
# 显示图表  
fig.show()  

在这里插入图片描述

五、比较排序类

1、条形图

import plotly.express as px  
import pandas as pd  
  
# 假设我们有以下数据  
data = {  
    '类别': ['A', 'B', 'C', 'D'],  
    '值': [20, 35, 30, 25]  
}  
df = pd.DataFrame(data)  
  
# 绘制条形图  
fig = px.bar(df, x='类别', y='值', title='条形图示例')  

# 遍历每个轨迹并设置文本  
def set_text(trace):  
    trace.text = [f"{val:.1f}" for val in trace.y]  
    trace.textposition = 'outside'  
  
fig.for_each_trace(set_text)  
  
# 显示图表  
fig.show()

在这里插入图片描述

2、漏斗图

import plotly.express as px  
import pandas as pd  

data = dict(
    number=[10000,7000,4000,2000,1000],
    stage=["浏览次数","关注数量","下载数量","咨询数量","成交数量"])
fig = px.funnel(data,x='number',y='stage')

# 显示图表  
fig.show()  

在这里插入图片描述

3、面积漏斗图

import plotly.express as px  
import pandas as pd  

data = dict(
    number=[10000,7000,4000,2000,1000],
    stage=["浏览次数","关注数量","下载数量","咨询数量","成交数量"])
fig = px.funnel_area(names=data['stage'],values=data['number'])

# 显示图表  
fig.show()  

在这里插入图片描述

六、趋势类图表

1、折线图

import plotly.express as px  
import pandas as pd  
  
# 假设的数据集  
data = {  
    '月份': ['1月', '2月', '3月', '4月', '5月', '6月'],  
    '销售额': [12000, 15000, 18000, 13000, 16000, 19000]  
}  
  
# 创建Pandas DataFrame  
df = pd.DataFrame(data)  
  
# 使用Plotly Express绘制折线图  
fig = px.line(df, x='月份', y='销售额', title='每月销售额趋势', labels={'月份': '月份', '销售额': '销售额'})  

  
# 显示图表  
fig.show()

在这里插入图片描述

2、多图例折线图

import plotly.express as px  
import pandas as pd  
  
# 假设的数据集,包含两个不同类别的销售额  
data = {  
    '月份': ['1月', '2月', '3月', '4月', '5月', '6月'],  
    '线上销售额': [12000, 15000, 18000, 13000, 16000, 19000],  
    '线下销售额': [8000, 10000, 12000, 14000, 11000, 13000]  
}  
  
# 创建Pandas DataFrame  
df = pd.DataFrame(data)  
  
# 使用Plotly Express绘制多图例折线图  
fig = px.line(df, x='月份', y=['线上销售额', '线下销售额'], title='每月线上与线下销售额趋势')  
  
  
# 显示图表  
fig.show()

在这里插入图片描述

3、分列折线图

import plotly.express as px  
import pandas as pd  
import numpy as np  
  
# 创建示例数据  
np.random.seed(0)  
date_rng = pd.date_range(start='2023-01-01', periods=12, freq='M')  # 生成12个月的日期范围  
categories = ['Category1', 'Category2']  # 分类变量  
subcategories = ['Sub1', 'Sub2', 'Sub3']  # 子分类变量  
  
# 生成时间序列数据  
df = pd.DataFrame()  
for cat in categories:  
    for subcat in subcategories:  
        data = np.random.rand(len(date_rng))  # 随机生成数据  
        df = df.append(pd.DataFrame({  
            'Date': date_rng,  
            'Category': cat,  
            'Subcategory': subcat,  
            'Value': data  
        }), ignore_index=True)  
  
# 将Date列转换为pandas的日期格式  
df['Date'] = pd.to_datetime(df['Date'])  
  
# 设置Date列为索引,以便在折线图中使用它作为x轴  
df.set_index('Date', inplace=True)  
  
# 绘制分列折线图  
fig = px.line(df, x=df.index, y='Value', color='Subcategory',  
               #facet_row='Category',  # 按照Category进行分行展示  
               facet_col='Category',  # 按照Category进行分列展示  
               title='分列折线图示例',  
               labels={'Value': '数值', 'Subcategory': '子类别'},  
               width=1000, height=600
              )  

  
# 显示图表  
fig.show()

在这里插入图片描述

4、面积图

import plotly.express as px  
import pandas as pd  
  
# 假设的数据集  
data = {  
    '月份': ['1月', '2月', '3月', '4月', '5月', '6月'],  
    '销售额': [12000, 15000, 18000, 13000, 16000, 19000]
}  
  
# 创建Pandas DataFrame  
df = pd.DataFrame(data)  
  
# 计算累积销售额  
df['累积销售额'] = df['销售额'].cumsum()  
# 使用Plotly Express绘制面积图  
fig = px.area(df, x='月份', y='累积销售额', title='累积销售额趋势', labels={'月份': '月份', '累积销售额': '累积销售额'})  

# 设置面积图的颜色填充
fig.update_traces(fill='tonexty', fillcolor='lightskyblue')

# 显示图表
fig.show()

在这里插入图片描述

5、多图例面积图

import plotly.express as px  
import pandas as pd  
  
# 假设的数据集  
data = {  
    '月份': ['1月', '2月', '3月', '4月', '5月', '6月'],  
    '产品A销售额': [1000, 1200, 1500, 1300, 1600, 1800],  
    '产品B销售额': [800, 1000, 1100, 1400, 1500, 1700]  
}  
  
# 创建Pandas DataFrame  
df = pd.DataFrame(data)  
  
# 使用Plotly Express绘制多图例面积图  
fig = px.area(df, x='月份', y=['产品A销售额', '产品B销售额'],   
               title='不同产品销售额趋势',  
               labels={'月份': '月份', '产品A销售额': '产品A销售额', '产品B销售额': '产品B销售额'},  
               color_discrete_sequence=['#1f77b4', '#ff7f0e'])  
  
# 更新图表的样式和布局  
fig.update_layout(  
    xaxis=dict(  
        titlefont=dict(size=16, color='black'),  
        tickfont=dict(size=12),  
    ),  
    yaxis=dict(  
        titlefont=dict(size=16, color='black'),  
        tickfont=dict(size=12),  
    ),  
    legend=dict(  
        x=0.01,  
        y=0.99,  
        bgcolor='rgba(255, 255, 255, 0.8)',  
        bordercolor='rgba(0, 0, 0, 0.5)'  
    ),  
    font=dict(  
        size=12,  
        color='black'  
    ),  
    plot_bgcolor='rgba(240, 240, 240, 1)',  # 设置背景色  
    paper_bgcolor='rgba(240, 240, 240, 1)',  # 设置画布背景色  
    margin=dict(l=40, r=40, t=60, b=30)  # 设置图表边距  
)  
  
# 显示图表  
fig.show()

在这里插入图片描述

七、频率分布类

1、直方图

import plotly.express as px  
import numpy as np  
  
# 生成一个正态分布的数据集  
np.random.seed(0)  # 设置随机种子以便结果可复现  
data = np.random.normal(loc=0, scale=1, size=1000)  # 生成均值为0,标准差为1的正态分布数据  
  
# 创建一个简单的DataFrame来存储数据  
df = pd.DataFrame(data, columns=['值'])

# 绘制直方图  
fig = px.histogram(df, x='值', nbins=30, title='数据集的直方图示例',  
                    histnorm='probability density',  # 归一化为概率密度  
                    opacity=0.8,  # 设置条形的透明度  
                    color_discrete_sequence=['#4E79A7'])  # 设置条形的颜色  
  
# 更新布局以美化图表  
fig.update_layout(  
    font_family="SimHei",  # 使用支持中文的字体  
    title_font_size=16,  # 标题字体大小  
    xaxis_title_text='值',  # x轴标题  
    yaxis_title_text='概率密度',  # y轴标题  
    xaxis_tickfont_size=12,  # x轴刻度字体大小  
    yaxis_tickfont_size=12,  # y轴刻度字体大小  
    barmode='overlay',  # 设置条形的堆叠模式(如果需要的话)  
    bargap=0.1,  # 设置条形之间的间隙  
    bargroupgap=0.1  # 设置组之间的间隙  
)  
  
# 显示图表  
fig.show()

在这里插入图片描述

2、箱线图

import plotly.express as px  

# 假设我们有以下数据,包含分类列'category'和数值列'value'  
data = {  
    'category': ['A', 'A', 'B', 'B', 'C', 'C', 'D', 'D'],  
    'value': [1, 2, 5, 4, 3, 7, 6, 8]  
}  
df = pd.DataFrame(data)  
  
# 绘制箱线图  
fig = px.box(df, x='category', y='value', title='箱线图示例')  
 
fig.show()

在这里插入图片描述

八、关系类图表

1、散点图

import plotly.express as px  
import pandas as pd  
import numpy as np  
  
# 创建示例数据  
np.random.seed(0)  
df = pd.DataFrame({  
    'x': np.random.randn(200),  
    'y': np.random.randn(200),  
    'category': np.random.choice(['A', 'B', 'C'], 200)  
})  
  
# 绘制散点图  
fig = px.scatter(df, x='x', y='y', color='category',  
                  title='散点图示例',  
                  labels={'x': 'X轴变量', 'y': 'Y轴变量', 'category': '类别'},  
                  width=800, height=600)  
  
  
# 显示图表  
fig.show()

在这里插入图片描述

2、分列散点图

import plotly.express as px  
import pandas as pd  
import numpy as np  
  
# 创建示例数据  
np.random.seed(0)  
df = pd.DataFrame({  
    'Category': np.repeat(['A', 'B'], 200),  
    'X': np.concatenate((np.random.randn(200) + 2, np.random.randn(200) - 2)),  
    'Y': np.concatenate((np.random.randn(200) + 2, np.random.randn(200) - 2)),  
    'Subcategory': np.tile(['Sub1', 'Sub2', 'Sub3', 'Sub4'], 100)  
})  
  
# 绘制分列散点图  
fig = px.scatter(df, x='X', y='Y', color='Subcategory',  
                  facet_col='Category',  
                  title='分列散点图示例',  
                  labels={'X': 'X轴数据', 'Y': 'Y轴数据', 'Subcategory': '子类别'},  
                  width=1000, height=600,  
                  facet_col_wrap=2 # 设置每行显示的子图数量  
                 )  

  
# 显示图表  
fig.show()

在这里插入图片描述

3、气泡图

import plotly.express as px  
import pandas as pd  
import numpy as np  
  
# 创建一个简单的DataFrame作为示例  
np.random.seed(0)  # 设置随机种子以便结果可复现  
df = pd.DataFrame({  
    'x': np.random.randn(200),  # x轴数据  
    'y': np.random.randn(200),  # y轴数据  
    'size': np.random.uniform(10, 50, 200),  # 气泡大小  
    'category': np.random.choice(['A', 'B', 'C', 'D'], 200)  # 气泡的类别  
})  
  
# 使用px.scatter绘制气泡图  
fig = px.scatter(df, x='x', y='y', size='size', color='category',  
                  title='气泡图示例',  
                  labels={'x': 'X轴数据', 'y': 'Y轴数据', 'size': '大小', 'category': '类别'},  
                  hover_data=['size', 'category'],  # 鼠标悬停时显示的数据  
                  log_x=False,  # 是否对X轴使用对数尺度,这里我们不使用  
                  width=800, height=600)  
  
# 显示图表  
fig.show()   

在这里插入图片描述

4、热力图

import seaborn as sns  
  
# 创建随机二维数据矩阵  
data = np.random.rand(10, 12)  
df_heat = pd.DataFrame(data, columns=[f'Col{i}' for i in range(1, 13)],  
                        index=[f'Row{i}' for i in range(1, 11)])  
  
# 绘制热力图  
fig = px.imshow(df_heat,  
                 title='热力图示例',  
                 labels=dict(x="列", y="行", color="值"),  
                 x=df_heat.columns, y=df_heat.index,  
                 color_continuous_scale='viridis',  
                 width=800, height=600)  
  
# 显示图表  
fig.show()

在这里插入图片描述

5、成对关系图

import seaborn as sns  

# 使用内置的iris数据集作为示例  
df_iris = px.data.iris()  
  
# 绘制成对关系图  
fig = px.scatter_matrix(df_iris,  
                         dimensions=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'],  
                         color='species',  
                         title='成对关系图示例',  
                         width=1000, height=800)  
  
# 显示图表  
fig.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1519902.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解锁区块链游戏数据解决方案

作者:stellafootprint.network 随着区块链技术的日新月异,游戏行业正迎来一场革命,催生了区块链游戏的崛起。这一变革不仅为用户带来了全新的互动体验,也开辟了全新的盈利渠道。然而,在这一新兴领域,数据的…

程序人生——Java泛型和反射的使用建议

目录 引出泛型和反射建议93:Java的泛型是类型擦除的建议94:不能初始化泛型参数和数组建议95:强制声明泛型的实际类型 建议96:不同的场景使用不同的泛型通配符建议97:警惕泛型是不能协变和逆变的 建议98:建议…

安卓国产百度网盘与国外云盘软件onedrive对比

我更愿意使用国外软件公司的产品,而不是使用国内百度等制作的流氓软件。使用这些国产软件让我不放心,他们占用我的设备大量空间,在我的设备上推送运行各种无用的垃圾功能。瞒着我,做一些我不知道的事情。 百度网盘安装包大小&…

网络层_IP

传输层解决的是传输控制,而实际真正决定数据能否发送到对端的是网络层。网络层是有概率传输,而传输层是可靠性传输。所以传输层网络层就可以做到将数据可靠发送到对端。网络层的常见协议有:IP、ICMP等,其中最重要的是IP协议&#…

HTML、XHTML和HTML5系列对比

目录 HTML HTML的优点: HTML的缺点: 应用场景: XHTML XHTML的优点: XHTML的缺点: 应用场景: HTML5 HTML5的优点: HTML5的缺点: 应用场景: 回首发现&#xff0…

Flutter Inspector 视图调试工具突然不能用了

The embedded browser failed to load. Error: JCEF is not supported in this env or failed to initialize 1、在 Android Studio 的 Help 菜单中,找到 Find Action 2、搜索 boot runtime,找到「Choose Boot Java Runtime for the IDE」选项 3、在「…

串行通信——IIC总结

一.什么是IIC? IIC(Inter-Integrated Circuit)也称I2C,中文叫集成电路总线。是一个多主从的串行总线,由飞利浦公司发明的通讯总线,属于半双工同步传输类总线,仅由两条线就能完成多机通讯&#…

电竞游戏行业有哪些媒体资源?活动发布会如何宣传?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 电竞游戏行业的媒体资源主要包括:游戏门户网站、综合资讯网站、社交媒体平台、电视和网络直播等。 在电竞游戏行业中,媒体资源是丰富多样的。游戏门户网站如游民…

sql中使用collection返回集合数据

今天在写一个接口时,有两级目录(父子关系),接口需要把两级数据以嵌套的形式返回给前端。我这个新手菜鸟一上来就查询两次sql,然后业务中处理嵌套关系,事实这种方法也能达到目的。但主管PR代码时&#xff0c…

【自动驾驶可视化工具】

自动驾驶可视化工具 自动驾驶可视化工具1.百度Apollo的Dreamview:2.Cruise的Worldview:3.Uber的AVS:4.Fglovex Studio: 自动驾驶可视化工具 介绍一下当前主流的自动驾驶可视化工具。 1.百度Apollo的Dreamview: Dreamview是百度Apollo平台开发的一种可视化工具,用…

华为配置中心AP内漫游实验

华为配置中心AP内漫游示例 组网图形 图1 配置中心AP内漫游组网图 配置流程组网需求配置思路数据规划配置注意事项操作步骤配置文件 配置流程 WLAN不同的特性和功能需要在不同类型的模板下进行配置和维护,这些模板统称为WLAN模板,如域管理模板、射频模…

K8S日志收集方案-EFK部署

EFK架构工作流程 部署说明 ECK (Elastic Cloud on Kubernetes):2.7 Kubernetes:1.23.0 文件准备 crds.yaml 下载地址:https://download.elastic.co/downloads/eck/2.7.0/crds.yaml operator.yaml 下载地址:https://download.e…

javaweb-maven+HTTP协议+Tomcat+SpringBoot入门+请求+响应+分层解耦

Maven IDEA集成Maven 依赖管理 依赖配置 maven是插件完成对应的工作的~ 哇哇哇maven看完啦~~~~~~ Spring.io Springboot是Spring家族的子项目,可以帮助我们非常快速地构建应用程序,简化开发,提高效率。 RestController请…

【XR806开发板试用】基于WEBSOCKET实现人机交互(控制开关灯)以及开发问题记录

一、开发板编译、功能介绍 根据官方文档编译烧录成功后,我们修改下官方例子,进行开发来实现websocket。 整体流程:开发板先自动寻找指定的wifi并且连接,连接成功后,通过websocket来与服务端连接,连接成功后…

升入理解计算机系统学习笔记

磁盘存储 磁盘是广为应用的保存大量数据的存储设备,存储数据的数量级可以达到几百到几千千兆字节,而基于RAM的存储器只能有几百或几千兆字节。不过,从磁盘上读信息的时间为毫秒级,比从DRAM读慢了10万倍,比从SRAM读慢了…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:GridItem)

网格容器中单项内容容器。 说明: 该组件从API Version 7开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。仅支持作为Grid组件的子组件使用。 子组件 可以包含单个子组件。 接口 GridItem GridItem(value?: GridItemOptions)…

DVWA靶场-CSRF跨站请求伪造

CSRF(跨站请求伪造)简介概念 CSRF(Cross—site request forgery),跨站请求伪造,是指利用受害者未失效的身份认证信息(cookie,会话等),诱骗其点击恶意链接或者访问包含攻击代码的页面…

UG NX二次开发(C#)-单选对话框UF_UI_select_with_single_dialog的使用

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、UF_UI_select_with_single_dialog函数3、实现代码3.1 利用委托创建一个方法3.2 直接调用1、前言 对于单选对话框,采用C++/C写的时候比较容易,也在帮助文档中有示例,但是对于C#开发采…

修复ElementUI中el-select与el-option无法通过v-model实现数据双向绑定的问题

1. 问题描述 需求:在使用ElementUI时,通过el-select和el-option标签实现下拉列表功能,当el-option中的选项被选中时,被选中的选项可以正确回显到已选择的列表中。 对于上面的下拉列表,当我们选中“超级管理员”的选项…

小程序路由跳转---事件通信通道EventChannel(一)

EventChannel是什么? 借助wx.navigateTo方法,在两个页面之间构建起数据通道,互相可以通过“派发事件”及“注册事件监听器”来实现基于事件的页面通信。基础库版本v2.7.3以上支持。 EventChannel中主要的方法 EventChannel.emit( strign e…