【目标检测经典算法】R-CNN、Fast R-CNN和Faster R-CNN详解系列一:R-CNN图文详解

news2025/1/19 23:01:18

学习视频:Faster-RCNN理论合集

概念辨析

在目标检测中,proposals和anchors都是用于生成候选区域的概念,但它们在实现上有些许不同。

  • Anchors(锚框): 锚框是在图像中预定义的一组框,它们通常以不同的尺度和长宽比分布在图像的每个位置。锚框的目的是覆盖图像中可能出现的各种目标形状和尺寸,以便在后续的目标检测过程中进行检测。在训练过程中,通过将锚框与真实目标框进行匹配,以确定哪些锚框包含目标,以及它们与目标的重叠程度。

  • Proposals(提议): 提议是通过一种方法(如Selective Search或者Region Proposal Network)生成的候选区域。与锚框不同,提议的位置和形状不是预定义的,而是根据图像内容和算法生成的。提议通常是通过对图像进行分割、合并、过滤或其他技术来生成一组可能包含目标的区域。

总的来说,锚框是一种固定的形状和尺寸的预定义区域,而提议是根据图像内容和算法生成的候选区域。在训练和测试目标检测模型时,通常会使用锚框或提议来生成候选区域,并进一步对这些区域进行分类和定位。

R-CNN

R-CNN(Region-based Convolutional Neural Network) 是一种经典的目标检测方法,它将目标检测任务分解为两个子任务:1)生成候选区域(region proposals);2)对每个候选区域进行分类和位置回归。

  • backbone : VGG16

在这里插入图片描述

R-CNN框架

R-CNN的模型框架总体分为四个部分:

  1. Region proposal: Selective Search算法生成大量候选框
  2. Feacure extraction :神经网络对候选框进行特征提取
  3. Classification: 分类器对候选框内的物体进行分类
  4. Bounding-box regression: 回归器对候选框位置进行修正

在这里插入图片描述

1. 候选框生成(使用SS算法)

在这里插入图片描述

什么是目标检测中的Selective Search (SS) 算法

Selective Search是一种常用于目标检测的候选区域生成方法。在传统的目标检测算法中,需要对图像中的每个可能包含目标的区域进行检测,但这样做会导致计算量巨大,尤其是在图像具有大量区域时。Selective Search的目标是通过一种高效的方式生成一组可能包含目标的区域,以减少后续目标检测算法的计算复杂度。

Selective Search算法的核心思想是通过结合不同的图像特征(如颜色、纹理、大小等)来生成候选区域。具体来说,该算法首先将图像分割成多个小的超像素,然后利用这些超像素之间的相似性进行合并,生成不同大小和形状的候选区域。最终,Selective Search输出一组具有多样性和丰富性的候选区域,其中有些可能包含真实目标。

这些生成的候选区域可以用作后续目标检测算法的输入,从而减少了需要检测的区域数量,提高了检测的效率。Selective Search已经成为了目标检测领域中的经典方法之一,在许多基于深度学习的目标检测算法中仍然被广泛使用。

2. 使用神经网络提取每个候选框的特征

在这里插入图片描述

由2000个候选框输入神经网络中,获取4096维的特征,变为2000*4096的矩阵。特征矩阵如下所示。

在这里插入图片描述

3. 分类器判定候选框所选物体的类别

在这里插入图片描述
在这里插入图片描述

NMS非极大值抑制

计算两个候选框(A和B)的IOU值,如果A和B两个候选框所计算的IOU计算结果都大于设定的阈值,则说明这两个候选框代表的是同一个物体,就把预测概率更低的候选框(B)删除,保留A,如此循环操作。

目的:剔除掉多个重复的候选框,只保留每个类中得分最高的候选框。

在这里插入图片描述

具体流程如下所示。

在这里插入图片描述

4. 回归器修正候选框位置

在这里插入图片描述
因为候选框位置可能不够精确,所以使用回归器对NMS剩下的候选框进行进一步的位置修正,从而得到每个类别得分最高的bounding box。

5. RCNN缺陷

  1. 计算量大:R-CNN需要在图像中生成大量的候选区域,并对每个候选区域进行CNN特征提取和分类,这导致了大量的重复计算,计算量巨大,使得其在实时性上受限。

  2. 训练和推理速度慢:由于R-CNN需要对每个候选区域进行独立的CNN前向传播,因此其训练和推理速度较慢,尤其是在大规模数据集上。

  3. 空间利用率低:R-CNN在生成候选区域时会产生大量的重叠区域,而且需要每个候选区域都要进行独立的CNN特征提取,这导致了空间利用率较低,计算资源的浪费。

  4. 不可端到端训练:R-CNN是一种多阶段的目标检测方法,需要分别训练生成候选区域的模块和分类位置回归的模块,这种多阶段的训练过程不利于端到端的优化。

  5. 感兴趣区域池化(RoI Pooling)的固定大小:R-CNN中的RoI Pooling操作将不同尺寸的候选区域映射到相同大小的特征图上,这会造成信息损失,尤其是对于较小的目标。

6. 改进

详见下篇:
【目标检测经典算法】R-CNN、Fast R-CNN和Faster R-CNN详解系列二:Fast R-CNN图文详解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1515084.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

代码随想录算法训练营Day45 ||leetCode 70. 爬楼梯 (进阶)|| 322. 零钱兑换 || 279.完全平方数

70. 爬楼梯 &#xff08;进阶&#xff09; 本质上和leetcode377一样 #include <iostream> #include <vector> using namespace std; int main() {int n, m;while (cin >> n >> m) {vector<int> dp(n 1, 0);dp[0] 1;for (int i 1; i < n; i…

antd vue Tabs控件的使用

Ant Design Vue-------Tabs标签页 今天就讲讲Ant Design Vue下的控件----tabs 标签页 结合项目中的需求&#xff0c;讲一下该控件如何使用&#xff0c;需求&#xff1a; &#xff08;1&#xff09;竖排样式 &#xff08;2&#xff09;如何使用v-for绑定数据源 &#xff08;3…

Midjourney新算法来袭!解决你角色形象一致性的大难题——亲测猫与女孩跨场景表现

嘿&#xff0c;朋友们&#xff0c;你们想过这个问题吗&#xff1f; 当你在制作一部电影或写一部小说时&#xff0c;你总希望同一个角色能在不同的场景和背景下出现&#xff0c;对吧&#xff1f; 但这时&#xff0c;一个难题冒出来了&#xff1a;如何确保这个角色的形象在各个…

基于经验模式分解和小波阈值的自适应降噪研究_杨铮

目的 针对轴承信号在采集过程中容易受到不同环境下噪声干扰&#xff0c;提出EMD分解结合小波阈值的自适应降噪的方法&#xff0c;对轴承振动信号进行降噪处理&#xff0c;提取出所需要的振动信号。方法 首先对含有噪声的轴承信号进行EMD分解&#xff0c;得到n个IMF并进行小波阈…

武汉云仓酒庄:品牌细节,用心呈现葡萄酒文化新高度

武汉云仓酒庄&#xff1a;品牌细节&#xff0c;用心呈现葡萄酒文化新高度 在繁忙的武汉都市中&#xff0c;有一处静谧的角落&#xff0c;那便是云仓酒庄。这里不仅仅是葡萄酒的汇聚之地&#xff0c;更是葡萄酒文化传播与交流的重要平台。近日&#xff0c;武汉云仓酒庄以其精心…

搭建Hadoop3.x完全分布式集群

零、资源准备 虚拟机相关&#xff1a; VMware workstation 16&#xff1a;虚拟机 > vmware_177981.zipCentOS Stream 9&#xff1a;虚拟机 > CentOS-Stream-9-latest-x86_64-dvd1.iso Hadoop相关 jdk1.8&#xff1a;JDK > jdk-8u261-linux-x64.tar.gzHadoop 3.3.6&am…

简单理解NAT模式和桥接模式

目录 桥接模式NAT模式总结 桥接模式 1.桥接模式下 当物理机X创建了一台或多台虚拟机 那么这些创建出来的虚拟机 可以视作一台独立的新机器 加入了该局域网 并允许和该局域网的物理机或者其他虚拟机直接通信 2.问题一在于 C类网的分配是有范围的(0-255) 假如是一个教室里的局域…

算法题目记录

1.杂题 1.1 计算二进制中1的个数 AcWing import java.util.*;public class Main{public static void main(String[] args) {Scanner sc new Scanner(System.in);int n sc.nextInt();int[] num new int[n];for (int i 0; i < n; i) {num[i] sc.nextInt();}int[] arr n…

STM32第七节:GPIO输入——按键检测(包含带参宏)

目录 前言 STM32第七节&#xff1a;GPIO输入——按键检测&#xff08;包含带参宏&#xff09; 带参宏 代码替换展示 定义带参宏 GPIO输入——按键检测 硬件部分 端口输入数据寄存器&#xff08;GPIOx_IDR&#xff09; 编写程序 配置以及编写bsp_key文件 main函数编程…

EasyCode 插件的具体使用

前言 EasyCode 是基于IntelliJ IDEA Ultimate版开发的一个代码生成插件&#xff0c;主要通过自定义模板&#xff08;基于velocity&#xff09;来生成各种你想要的代码。通常用于生成Entity、Dao、Service、Controller。如果你动手能力强还可以用于生成HTML、JS、PHP等代码。理…

Spring Cloud项目整合Sentinel及简单使用

说明&#xff1a;Sentinel是阿里巴巴开发的微服务治理中间件&#xff0c;可用于微服之间请求的流量管控、权限控制、熔断降级等场景。本文介绍如何在Spring Cloud项目中整合Sentinel&#xff0c;以及Sentinel的简单使用。 环境 首先搭建一个简单的微服务环境&#xff0c;有以…

关于分布式微服务数据源加密配置以及取巧方案(含自定义加密配置)

文章目录 前言Spring Cloud 第一代1、创建config server项目并加入加解密key2、启动项目&#xff0c;进行数据加密3、实际项目中的测试server Spring Cloud Alibaba低版本架构不支持&#xff0c;取巧实现无加密配置&#xff0c;联调环境问题加密数据源配置原理探究自定义加密解…

Django框架的全面指南:从入门到高级【第128篇—Django框架】

Django框架的全面指南&#xff1a;从入门到高级 Django是一个高效、功能强大的Python Web框架&#xff0c;它被广泛用于构建各种规模的Web应用程序。无论是初学者还是有经验的开发人员&#xff0c;都可以从入门到掌握Django的高级技巧。在本指南中&#xff0c;我们将带你逐步了…

C++Qt学习——添加资源文件

目录 1、创建好了文件之后&#xff0c;在左边空白处按下CtrlN&#xff0c;创建Qt 以及Qt Resource File 2、写入名称&#xff0c;点击下一步 3、可以发现已经创建好啦。 4、点击Add Prefix 5、写上前缀&#xff0c;最好加上斜杠 6、选择提前放好的图片或者icon 7、发…

(C语言)strcmp函数详解与模拟实现与strncmp详解

目录 1. strcmp函数详解 2. strcmp模拟实现 3. strncmp函数 3.1 特殊情况分析 1. strcmp函数详解 头文件<string.h> 返回值是int类型&#xff0c;函数是将str1与str2这两个数组进行比较&#xff0c; 若str1>str2返回大于0的值 若str1<str2返回小于0的值 若s…

【linux本地安装tinycudann包教程】

【linux本地安装tinycudann包教程】 tiny-cuda-nn官网链接 如果你是windows 10系统的,想要安装tiny-cuda-nn可以参考我的文章——windows 10安装tiny-cuda-n包 根据官网要求:C++要求对应14,其实这样就已经告诉我们linux系统中的gcc版本不能高于9,同时下面又告诉我们gcc版…

如何在 Linux ubuntu 系统上搭建 Java web 程序的运行环境

如何在 Linux ubuntu 系统上搭建 Java web 程序的运行环境 基于包管理器进行安装 Linux 会把一些软件包放到对应的服务器上&#xff0c;通过包管理器这样的程序&#xff0c;来把这些软件包给下载安装 ubuntu系统上的包管理器是 apt centos系统上的包管理器 yum 注&#xff1a;…

Pytorch学习 day14(模型的验证步骤)

如何利用已经训练好的模型&#xff0c;验证它的结果&#xff0c;步骤如下&#xff1a; 步骤一&#xff1a;加载测试输入并更改为合适尺寸 保存图片到指定文件夹下&#xff0c;注意是否为同级目录注意&#xff1a;返回上一级目录为“…/xxx"有时&#xff0c;我们自己的输…

【QT+QGIS跨平台编译】之七十三:【QGIS_Analysis跨平台编译】—【错误处理:字符串错误】

文章目录 一、字符串错误二、处理方法三、涉及到的文件一、字符串错误 常量中有换行符错误:(也有const char * 到 LPCWSTR 转换的错误) 二、处理方法 需要把对应的文档用记事本打开,另存为 “带有BOM的UTF-8” 三、涉及到的文件 涉及到的文件有: src\analysis\processin…

中国城市统计年鉴、中国县域统计年鉴、中国财政统计年鉴、中国税务统计年鉴、中国科技统计年鉴、中国卫生统计年鉴​

统计年鉴是指以统计图表和分析说明为主&#xff0c;通过高度密集的统计数据来全面、系统、连续地记录年度经济、社会等各方面发展情况的大型工具书来获取统计数据资料。 统计年鉴是进行各项经济、社会研究的必要前提。而借助于统计年鉴&#xff0c;则是研究者常用的途径。目前国…