实战 | 基于YOLOv9和OpenCV实现车辆跟踪计数(步骤 + 源码)

news2025/1/10 12:16:37

导  读

    本文主要介绍使用YOLOv9和OpenCV实现车辆跟踪计数(步骤 + 源码)。      

实现步骤

图片

    监控摄像头可以有效地用于各种场景下的车辆计数和交通流量统计。先进的计算机视觉技术(例如对象检测和跟踪)可应用于监控录像,以识别和跟踪车辆在摄像机视野中移动。

【1】安装ultralytics,因为它拥有直接使用 YoloV9 预训练模型的方法。

pip install ultralytics

【2】完成后,就可以创建跟踪器函数来跟踪对象了。我们只是为此创建了一个名为tracker.py的python文件。

import math
class CustomTracker:    def __init__(self):        # Store the center positions of the objects        self.custom_center_points = {}        # Keep the count of the IDs        # each time a new object id detected, the count will increase by one        self.custom_id_count = 0
    def custom_update(self, custom_objects_rect):        # Objects boxes and ids        custom_objects_bbs_ids = []
        # Get center point of new object        for custom_rect in custom_objects_rect:            x, y, w, h = custom_rect            cx = (x + x + w) // 2            cy = (y + y + h) // 2
            # Find out if that object was detected already            same_object_detected = False            for custom_id, pt in self.custom_center_points.items():                dist = math.hypot(cx - pt[0], cy - pt[1])
                if dist < 35:                    self.custom_center_points[custom_id] = (cx, cy)                    custom_objects_bbs_ids.append([x, y, w, h, custom_id])                    same_object_detected = True                    break
            # New object is detected we assign the ID to that object            if same_object_detected is False:                self.custom_center_points[self.custom_id_count] = (cx, cy)                custom_objects_bbs_ids.append([x, y, w, h, self.custom_id_count])                self.custom_id_count += 1
        # Clean the dictionary by center points to remove IDS not used anymore        new_custom_center_points = {}        for custom_obj_bb_id in custom_objects_bbs_ids:            _, _, _, _, custom_object_id = custom_obj_bb_id            center = self.custom_center_points[custom_object_id]            new_custom_center_points[custom_object_id] = center
        # Update dictionary with IDs not used removed        self.custom_center_points = new_custom_center_points.copy()        return custom_objects_bbs_ids

【3】编写车辆计数的主要代码。​​​​​​​

# Import the Librariesimport cv2import pandas as pdfrom ultralytics import YOLOfrom tracker import *

    导入所有必要的库后,就可以导入模型了。我们不必从任何存储库下载模型。Ultralytics 做得非常出色,让我们可以更轻松地直接下载它们。

model=YOLO('yolov9c.pt')

    这会将 yolov9c.pt 模型下载到当前目录中。该模型已经在由 80 个不同类别组成的 COCO 数据集上进行了训练。现在让我们指定类:​​​​​​​

class_list = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',              'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',              'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',              'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',              'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',              'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog',              'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',              'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',              'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

现在,下一步是加载您要使用的视频。​​​​​​​

tracker=CustomTracker()count=0
cap = cv2.VideoCapture('traffictrim.mp4')
# Get video propertiesfps = int(cap.get(cv2.CAP_PROP_FPS))width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create VideoWriter object to save the modified framesoutput_video_path = 'output_video.mp4'fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # You can use other codecs like 'XVID' based on your systemout = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

在这里,我们在加载视频后获取视频属性,因为它们对于使用计数器重新创建视频并最终将其存储在本地非常有用。​​​​​​​

# Looping over each frame and Performing the Detection
down = {}counter_down = set()while True:    ret, frame = cap.read()    if not ret:        break    count += 1
    results = model.predict(frame)
    a = results[0].boxes.data    a = a.detach().cpu().numpy()    px = pd.DataFrame(a).astype("float")    # print(px)
    list = []
    for index, row in px.iterrows():        #        print(row)        x1 = int(row[0])        y1 = int(row[1])        x2 = int(row[2])        y2 = int(row[3])        d = int(row[5])        c = class_list[d]        if 'car' in c:            list.append([x1, y1, x2, y2])
    bbox_id = tracker.custom_update(list)    # print(bbox_id)    for bbox in bbox_id:        x3, y3, x4, y4, id = bbox        cx = int(x3 + x4) // 2        cy = int(y3 + y4) // 2        # cv2.circle(frame,(cx,cy),4,(0,0,255),-1) #draw ceter points of bounding box        # cv2.rectangle(frame, (x3, y3), (x4, y4), (0, 255, 0), 2)  # Draw bounding box        # cv2.putText(frame,str(id),(cx,cy),cv2.FONT_HERSHEY_COMPLEX,0.8,(0,255,255),2)
        y = 308        offset = 7
        ''' condition for red line '''        if y < (cy + offset) and y > (cy - offset):            ''' this if condition is putting the id and the circle on the object when the center of the object touched the red line.'''
            down[id] = cy  # cy is current position. saving the ids of the cars which are touching the red line first.            # This will tell us the travelling direction of the car.            if id in down:                cv2.circle(frame, (cx, cy), 4, (0, 0, 255), -1)                #cv2.putText(frame, str(id), (cx, cy), cv2.FONT_HERSHEY_COMPLEX, 0.8, (0, 255, 255), 2)                counter_down.add(id)
                # # line    text_color = (255, 255, 255)  # white color for text    red_color = (0, 0, 255)  # (B, G, R)
    # print(down)    cv2.line(frame, (282, 308), (1004, 308), red_color, 3)  # starting cordinates and end of line cordinates    cv2.putText(frame, ('red line'), (280, 308), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)

    downwards = (len(counter_down))    cv2.putText(frame, ('Vehicle Counter - ') + str(downwards), (60, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, red_color, 1,                cv2.LINE_AA)
    cv2.line(frame,(282,308),(1004,308),red_color,3)  #  starting cordinates and end of line cordinates    cv2.putText(frame,('red line'),(280,308),cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)        # This will write the Output Video to the location specified above    out.write(frame)

    在上面的代码中,我们循环遍历视频中的每个帧,然后进行检测。然后,由于我们仅对车辆进行计数,因此仅过滤掉汽车的检测结果。

    之后,我们找到检测到的车辆的中心,然后在它们穿过人工创建的红线时对它们进行计数。我们可以在下面的视频快照中清楚地看到它们。

图片

图片

图片

图片

图片

我们可以看到,当车辆越过红线时,视频左上角的计数器不断增加。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1514819.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

单调队列 维护区间最值(板子+两道练手)

1.P1886 滑动窗口 /【模板】单调队列https://www.luogu.com.cn/problem/P1886 板子题&#xff0c;传送门在上方 // Problem: // P1886 滑动窗口 /【模板】单调队列 // // Contest: Luogu // URL: https://www.luogu.com.cn/problem/P1886 // Memory Limit: 500 MB //…

Zookeeper3.5.9源码编译和启动

目录 参考链接1. 下载源码2. 准备更高版本的JDK和Maven环境Java 8Maven 3.6.3 3. 用IDEA打开项目进行编译和启动3.1. 设置maven版本3.2. 设置JDK版本为1.83.3. 切换 Maven profiles 选项到 java-build3.4. 执行 Ant build 生成和编译Java文件3.4.1. 执行ant build-generated而非…

微信小程序之vue按钮切换内容变化

效果图如下&#xff1b; 上代码 <template><view class"content"><view class"searchDiv"><view class"paytab"><view class"buttab" v-for"(t,index) in tabList" :key"index" clic…

叶子分享站PHP源码

叶子网盘分享站PHP网站源码&#xff0c;创建无限级文件夹&#xff0c;上传文件&#xff0c;可进行删除&#xff0c;下载等能很好的兼容服务器。方便管理者操作&#xff0c;查看更多的下载资源以及文章&#xff0c;新增分享功能&#xff0c;异步上传文件/资源等 PHP网盘源码优势…

Docker进阶:容器与镜像的导入和导出

Docker进阶&#xff1a;容器与镜像的导入和导出 1、容器&#xff08;Container&#xff09;和镜像&#xff08;Image&#xff09;的区别2、导出 Docker 容器3、导入 Docker 容器快照为镜像4、导出 Docker 镜像5、导入 Docker 镜像6、docker export 和 docker save区别7、docker…

优先级队列 priority_queue 的使用及示例代码

一、简介 priority_queue 即 优先级队列&#xff08;一种特殊的队列&#xff0c;其中的元素按照一定的优先级顺序排列&#xff0c;每次取出时都会取出具有最高优先级的元素&#xff0c;或者说可以获取队列中的最大/最小元素&#xff09;&#xff0c;它是C标准模板库&#xff0…

构建部署_Jenkins介绍与安装

构建部署_Jenkins介绍与安装 构建部署_Jenkins介绍与安装Jenkins介绍Jenkins安装 构建部署_Jenkins介绍与安装 Jenkins介绍 Jenkins是一个可扩展的持续集成引擎。 持续集成&#xff0c;就是通常所说的CI&#xff08;Continues Integration&#xff09;&#xff0c;可以说是现…

Android的UI渲染机制(二)

安卓系统中有 2 种 vsync 信号&#xff1a; &#xff08;1&#xff09;屏幕产生的硬件 vsync信号&#xff0c;主要用于通知应用程序开始在自己的窗口“画布”中执行一帧画面的绘制和渲染 &#xff08;2&#xff09;由SurfaceFlinger将其转成的软件 vsync 信号&#xff0c;经由…

十六、接口隔离原则、反射、依赖注入

接口隔离原则、反射、特性、依赖注入 接口隔离原则 客户端不应该依赖它不需要的接口&#xff1b;一个类对另一个类的依赖应该建立在最小的接口上。 五种原则当中的i 上一章中的接口&#xff0c;即契约。 契约就是在说两件事&#xff0c;甲方说自己不会多要&#xff0c;乙方会在…

(黑马出品_高级篇_03)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

&#xff08;黑马出品_高级篇_03&#xff09;SpringCloudRabbitMQDockerRedis搜索分布式 微服务技术——多级缓存 今日目标1.什么是多级缓存2.JVM进程缓存2.1.导入案例2.1.1.安装MySQL2.1.1.1.准备目录2.1.1.2.运行命令2.1.1.3.修改配置 2.1.1.4.…

优雅的记录日志,拒绝打印模糊信息导致bug定位难

想必大家都有过这样的经历&#xff1a;在项目中遇到报错需要紧急修复时&#xff0c;却因为日志信息模糊不清&#xff0c;无法迅速准确地定位到错误源头&#xff0c;这确实让人感到十分苦恼和无奈。 在新入职一家公司并着手修改遗留bug时&#xff0c;经常发现之前的开发者并未记…

用云服务器构建gpt和stable-diffusion大模型

用云服务器构建gpt和stable-diffusion大模型 一、前置知识二、用云端属于自己的聊天chatGLM3step1、项目配置step2、环境配置1、前置知识2、环境配置流程 step3、创建镜像1、前置知识2、创建镜像流程 step4、通过 Gradio 创建ChatGLM交互界面1、前置知识2、创建ChatGLM交互界面…

利用HubSpot出海CRM和人工智能技术提升出海业务的效率和效果

在当今数字化时代&#xff0c;智能化营销已经成为企业获取客户和扩大市场份额的关键策略。特别是对于出海业务而言&#xff0c;利用智能化营销技术来应对不同文化、语言和市场的挑战&#xff0c;已经成为企业竞争的关键优势。今天运营坛将带领大家探讨如何利用HubSpot CRM和人工…

JVM 重要知识梳理

一、java内存区域 程序计数器&#xff1a;线程私有&#xff0c;唯一一个不会出现outOfMemoryError的内存区域虚拟机栈&#xff1a;线程私有&#xff0c;栈由一个个栈帧组成&#xff0c;而每个栈帧中都拥有&#xff1a;局部变量表、操作数栈、动态链接、方法返回地址。本地方法…

Prompt Learning:人工智能的新篇章

开篇&#xff1a;AI的进化之旅 想象一下&#xff0c;你正在和一位智能助手对话&#xff0c;它不仅理解你的问题&#xff0c;还能提出引导性的问题帮助你更深入地思考。这正是prompt learning的魔力所在——它让机器学习模型变得更加智能和互动。在这篇博客中&#xff0c;我们将…

【JavaScript】面试手撕柯里化函数

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 引入柯里化定义实现快速使用柯里化的作用提高自由度bind函数 参考资料 引入 上周…

git区域与对象

大纲 工作区(workspace directory):本机的代码项目,是一种沙箱环境 暂存区(stage index):工作区在程序员写程序的过程中会发生无数次改动&#xff0c;git不可能记录每一次的改动&#xff0c;这些改动的过程在暂存区负责记录&#xff0c;暂存区会将最终的状态随着程序员的提交…

springboot与elasticsearch-7.16.2的基础CRUD使用——入门向

highlight: an-old-hope 基于elasticsearch-7.16.2 &#xff0c;使用的是旧版的高级客户端 restHighLevelClient springboot版本2.6.13 项目原代码地址 https://gitee.com/kenwm/es7demo.git 参考博客 1、SpringBoot集成ElasticSearch&#xff0c;实现模糊查询&#xff0c;批…

学python新手如何安装pycharm;python小白如何安装pycharm

首先找到官网&#xff1a; Download PyCharm: The Python IDE for data science and web development by JetBrains 打开后选择下载&#xff0c;下图标红部分 点击exe程序&#xff0c;点击下一步&#xff01; 选择安装路径&#xff0c;下一步 弹出界面全选 选择默认 然后直接…

Spring核心接口:BeanFactory接口

一图胜千言 BeanFactory 属性&方法解析 点击展开注意&#xff1a;以上代码仅供参考&#xff0c;可能存在不完整或不准确的情况。 public interface BeanFactory {// 根据Bean名称返回Bean实例。// 如果Bean不存在&#xff0c;则抛出NoSuchBeanDefinitionException异常。Obj…