(黑马出品_高级篇_03)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

news2024/11/18 21:51:17

(黑马出品_高级篇_03)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

    • = = = = = = = = = = = = = = = 微服务技术——多级缓存 = = = = = = = = = = = = = = =
    • 今日目标
    • 1.什么是多级缓存
    • 2.JVM进程缓存
      • 2.1.导入案例
        • 2.1.1.安装MySQL
          • 2.1.1.1.准备目录
          • 2.1.1.2.运行命令
          • 2.1.1.3.修改配置
        • 2.1.1.4.重启
        • 2.1.2.导入SQL
        • 2.1.3.导入Demo工程
          • 2.1.3.1.分页查询商品
          • 2.1.3.2.新增商品
          • 2.1.3.3.修改商品
          • 2.1.3.4.修改库存
          • 2.1.3.5.删除商品
          • 2.1.3.6.根据id查询商品
          • 2.1.3.7.根据id查询库存
          • 2.1.3.8.启动
        • 2.1.4.导入商品查询页面
          • 2.1.4.1.运行nginx服务
          • 2.1.4.2.反向代理
      • 2.2.初识Caffeine
      • 2.3.实现JVM进程缓存
        • 2.3.1.需求
        • 2.3.2.实现
    • 3.Lua语法入门
      • 3.1.初识Lua
      • 3.1.HelloWorld
      • 3.2.变量和循环
        • 3.2.1.Lua的数据类型
        • 3.2.2.声明变量
        • 3.2.3.循环
      • 3.3.条件控制、函数
        • 3.3.1.函数
        • 3.3.2.条件控制
        • 3.3.3.案例
    • 4.实现多级缓存
      • 4.1.安装OpenResty
        • 4.1.1.安装
          • 1)安装开发库
          • 2)安装OpenResty仓库
          • 3)安装OpenResty
          • 4)安装opm工具
          • 5)目录结构
          • 6)配置nginx的环境变量
        • 4.1.2.启动和运行
        • 4.1.3.备注
      • 4.2.OpenResty快速入门
        • 4.2.1.反向代理流程
        • 4.2.2.OpenResty监听请求
        • 4.2.3.编写item.lua
      • 4.3.请求参数处理
        • 4.3.1.获取参数的API
        • 4.3.2.获取参数并返回
      • 4.4.查询Tomcat
        • 4.4.1.发送http请求的API
        • 4.4.2.封装http工具
        • 4.4.3.CJSON工具类
        • 4.4.4.实现Tomcat查询
        • 4.4.5.基于ID负载均衡
          • 1)原理
          • 2)实现
          • 3)测试
      • 4.5.Redis缓存预热
      • 4.6.查询Redis缓存
        • 4.6.1.封装Redis工具
        • 4.6.2.实现Redis查询
      • 4.7.Nginx本地缓存
        • 4.7.1.本地缓存API
        • 4.7.2.实现本地缓存查询
    • 5.缓存同步
      • 5.1.数据同步策略
      • 5.2.安装Canal
        • 5.2.1.认识Canal
        • 5.2.2.安装Canal
          • 1.开启MySQL主从
            • 1.1.开启binlog
            • 1.2.设置用户权限
          • 2.安装Canal
            • 2.1.创建网络
            • 2.2.安装Canal
      • 5.3.监听Canal
        • 5.3.1.引入依赖:
        • 5.3.2.编写配置:
        • 5.3.3.修改Item实体类
        • 5.3.4.编写监听器

在这里插入图片描述
在这里插入图片描述

[此文档是在心向阳光的天域的博客加了一些有助于自己的知识体系,也欢迎大家关注这个大佬的博客](https://blog.csdn.net/sinat_38316216/category_12263516.html)
[是这个视频](https://www.bilibili.com/video/BV1LQ4y127n4/?p=5&spm_id_from=pageDriver&vd_source=9beb0a2f0cec6f01c2433a881b54152c)

对于Redis 建议 全部都学完再学,小编这这里就跳过了 大家如果想了解Redis ,请看我的Redis专题

在这里插入图片描述

= = = = = = = = = = = = = = = 微服务技术——多级缓存 = = = = = = = = = = = = = = =

今日目标

在这里插入图片描述

1.什么是多级缓存

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:
在这里插入图片描述
存在下面的问题:

•请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈
•Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存
  • 访问非静态资源(ajax查询数据)时,访问服务端
  • 请求到达Nginx后,优先读取Nginx本地缓存
  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
  • 如果Redis查询未命中,则查询Tomcat
  • 请求进入Tomcat后,优先查询JVM进程缓存
  • 如果JVM进程缓存未命中,则查询数据库

在这里插入图片描述

在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了

因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:
在这里插入图片描述

另外,我们的Tomcat服务将来也会部署为集群模式:
在这里插入图片描述

可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询

  • 另一个就是在Tomcat中实现JVM进程缓存

其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。

这也是今天课程的难点和重点。
在这里插入图片描述

2.JVM进程缓存

为了演示多级缓存的案例,我们先准备一个商品查询的业务。

2.1.导入案例

参考课前资料的:《案例导入说明.md》
在这里插入图片描述

案例导入说明
为了演示多级缓存,我们先导入一个商品管理的案例,其中包含商品的CRUD功能。我们将来会给查询商品添加多级缓存。

2.1.1.安装MySQL

后期做数据同步需要用到MySQL的主从功能,所以需要大家在虚拟机中,利用Docker来运行一个MySQL容器。

2.1.1.1.准备目录

为了方便后期配置MySQL,我们先准备两个目录,用于挂载容器的数据和配置文件目录:
因为之前安装过,这里我改名为mysql_cluster

# 进入/tmp目录
cd /tmp
# 创建文件夹
mkdir mysql_cluster
# 进入mysql目录
cd mysql_cluster
2.1.1.2.运行命令

进入mysql_cluster目录后,执行下面的Docker命令:

docker run \
 -p 3306:3306 \
 --name mysql \
 -v $PWD/conf:/etc/mysql_cluster/conf.d \
 -v $PWD/logs:/logs \
 -v $PWD/data:/var/lib/mysql_cluster \
 -e MYSQL_ROOT_PASSWORD=123 \
 --privileged \
 -d \
 mysql:5.7.25

查看容器

docker ps 

在这里插入图片描述

2.1.1.3.修改配置

在/tmp/mysql_cluster/conf目录添加一个my.cnf文件,作为mysql的配置文件:

# 创建文件
touch /tmp/mysql_cluster/conf/my.cnf

在这里插入图片描述

文件的内容如下:

[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql_cluster
server-id=1000

在这里插入图片描述

2.1.1.4.重启

配置修改后,必须重启容器:

docker restart mysql_cluster
2.1.2.导入SQL

接下来,利用Navicat客户端连接MySQL,然后导入课前资料提供的sql文件:
注意用虚拟机的ip地址连接
在这里插入图片描述

其中包含两张表:

  • tb_item:商品表,包含商品的基本信息
  • tb_item_stock:商品库存表,包含商品的库存信息

之所以将库存分离出来,是因为库存是更新比较频繁的信息,写操作较多。而其他信息修改的频率非常低。
通过ip连接数据库
在这里插入图片描述
创建一个数据库叫heima
然后导入sql即可
商品
在这里插入图片描述
库存
在这里插入图片描述

2.1.3.导入Demo工程

下面导入课前资料提供的工程:
在这里插入图片描述

项目结构如图所示:
在这里插入图片描述
其中的业务包括:

  • 分页查询商品
  • 新增商品
  • 修改商品
  • 修改库存
  • 删除商品
  • 根据id查询商品
  • 根据id查询库存

业务全部使用mybatis-plus来实现,如有需要请自行修改业务逻辑。

2.1.3.1.分页查询商品

com.heima.item.web包的ItemController中可以看到接口定义:

在这里插入图片描述

2.1.3.2.新增商品

com.heima.item.web包的ItemController中可以看到接口定义:

在这里插入图片描述

2.1.3.3.修改商品

com.heima.item.web包的ItemController中可以看到接口定义:
在这里插入图片描述

2.1.3.4.修改库存

com.heima.item.web包的ItemController中可以看到接口定义:
在这里插入图片描述

2.1.3.5.删除商品

com.heima.item.web包的ItemController中可以看到接口定义:

在这里插入图片描述

这里是采用了逻辑删除,将商品状态修改为3

2.1.3.6.根据id查询商品

com.heima.item.web包的ItemController中可以看到接口定义:
在这里插入图片描述

这里只返回了商品信息,不包含库存

2.1.3.7.根据id查询库存

com.heima.item.web包的ItemController中可以看到接口定义:
在这里插入图片描述

2.1.3.8.启动

注意修改application.yml文件中配置的mysql地址信息:
在这里插入图片描述

需要修改为自己的虚拟机地址信息、还有账号和密码。

修改后,启动服务,访问:http://localhost:8081/item/10001即可查询数据

查看商品信息

http://localhost:8081/item/10001

在这里插入图片描述

查看库存信息

http://localhost:8081/item/stock/10002

在这里插入图片描述

2.1.4.导入商品查询页面

商品查询是购物页面,与商品管理的页面是分离的。
部署方式如图:
在这里插入图片描述
我们需要准备一个反向代理的nginx服务器,如上图红框所示,将静态的商品页面放到nginx目录中。
页面需要的数据通过ajax向服务端(nginx业务集群)查询。

2.1.4.1.运行nginx服务

这里我已经给大家准备好了nginx反向代理服务器和静态资源。

我们找到课前资料的nginx目录:
在这里插入图片描述

将其拷贝到一个非中文目录下,运行这个nginx服务。

nginx是80端口,一般80端口被占用可能性比较大,我们修改nginx.conf文档
随便设置一个没被占用的端口号
在这里插入图片描述
修改如下:

在这里插入图片描述

运行命令:

start nginx.exe

访问,看到nginx的欢迎页面

localhost:8934

在这里插入图片描述

然后访问

http://localhost:8934/item.html?id=10001

即可:
在这里插入图片描述

2.1.4.2.反向代理

现在,页面是假数据展示的。我们需要向服务器发送ajax请求,查询商品数据。

打开控制台,可以看到页面有发起ajax查询数据:
在这里插入图片描述

而这个请求地址同样是80端口,所以被当前的nginx反向代理了。

查看nginx的conf目录下的nginx.conf文件:
在这里插入图片描述

其中的关键配置如下:
在这里插入图片描述

其中的192.168.150.101是我的虚拟机IP,也就是我的Nginx业务集群要部署的地方:
在这里插入图片描述
完整内容如下:


#user  nobody;
worker_processes  1;

events {
    worker_connections  1024;
}

http {
    include       mime.types;
    default_type  application/octet-stream;

    sendfile        on;
    #tcp_nopush     on;
    keepalive_timeout  65;

    upstream nginx-cluster{
        server 192.168.150.101:8081;
    }
    server {
        listen       80;
        server_name  localhost;

	location /api {
            proxy_pass http://nginx-cluster;
        }

        location / {
            root   html;
            index  index.html index.htm;
        }

        error_page   500 502 503 504  /50x.html;
        location = /50x.html {
            root   html;
        }
    }
}

2.2.初识Caffeine

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

我们今天会利用Caffeine框架来实现JVM进程缓存。

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine

Caffeine的性能非常好,下图是官方给出的性能对比:
在这里插入图片描述
可以看到Caffeine的性能遥遥领先!

缓存使用的基本API:

@Test
    public void testBasic() {
        // 构建cache对象
        Cache<String, String> cache = Caffeine.newBuilder().build();

        // 存数据
        cache.put("gf", "迪丽热巴");
        String gf = cache.getIfPresent("gf");
        System.out.println("获取到数据:" + gf);

        // 另一种获取不到就去数据库中查询,然后返回
        String defaultGF = cache.get("defaultGF", key -> {
            return "柳岩";
        });
        System.out.println("获取到默认数据:" + defaultGF);

    }

查询结果

获取到数据:迪丽热巴
获取到默认数据:柳岩

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。

Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
        .maximumSize(1) // 设置缓存大小上限为 1
        .build();
    

示例:
CaffeineTest.java

 @Test
    public void testByVolume() {
        Cache<String, String> cache = Caffeine.newBuilder().maximumSize(1).build();
        cache.put("derrick", "rose");
        cache.put("kobe", "byrant");
        cache.put("machel", "jordan");

        String derrick = cache.getIfPresent("derrick");
        String kobe = cache.getIfPresent("kobe");
        String machel = cache.getIfPresent("machel");
        System.out.println("derrick:" + derrick);
        System.out.println("kobe:" + kobe);
        System.out.println("machel:" + machel);
    }

运行结果

derrick:rose
kobe:byrant
machel:jordan

这里发现运行结果并没有容量上限,这是因为,上限之后的清理需要时间,我们增加睡眠时间,发现增加后,只有最后1个
在这里插入图片描述

  • 基于时间:设置缓存的有效时间

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
        // 设置缓存有效期为 10 秒,从最后一次写入开始计时 
        .expireAfterWrite(Duration.ofSeconds(10)) 
        .build();
    
    

基本示例:
CaffeineTest.java

    @Test
    public void testByTime() throws InterruptedException {
        Cache<Object, Object> cache = Caffeine.newBuilder().expireAfterWrite(Duration.ofSeconds(1)).build();

        // 存数据
        cache.put("gf", "柳岩");
        System.out.println("gf:" + cache.getIfPresent("gf"));
        // 休眠一会儿
        Thread.sleep(2000L);
        System.out.println("gf:" + cache.getIfPresent("gf"));
    }

输出结果
发现超过1秒之后,会被清理

gf:柳岩
gf:null
  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

2.3.实现JVM进程缓存

2.3.1.需求

利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000
2.3.2.实现

首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。

在item-service的com.heima.item.config包下定义CaffeineConfig类:

package com.heima.item.config;

import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class CaffeineConfig {

    @Bean
    public Cache<Long, Item> itemCache(){
        return Caffeine.newBuilder()
                .initialCapacity(100)
                // 分隔符便于阅读
                .maximumSize(10_000)
                .build();
    }

    @Bean
    public Cache<Long, ItemStock> stockCache(){
        return Caffeine.newBuilder()
                .initialCapacity(100)
                .maximumSize(10_000)
                .build();
    }
}

然后,修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:

@RestController
@RequestMapping("item")
public class ItemController {

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    @Autowired
    private Cache<Long, Item> itemCache;
    @Autowired
    private Cache<Long, ItemStock> stockCache;
    
    // ...其它略
    
    @GetMapping("/{id}")
    public Item findById(@PathVariable("id") Long id) {
        return itemCache.get(id, key -> itemService.query()
                .ne("status", 3).eq("id", key)
                .one()
        );
    }

    @GetMapping("/stock/{id}")
    public ItemStock findStockById(@PathVariable("id") Long id) {
        return stockCache.get(id, key -> stockService.getById(key));
    }
}

重启服务
访问

http://localhost:8081/item/10001

发现有查询sql语句的日志
在这里插入图片描述
清空日志再此访问,没有日志,说明缓存生效了
在这里插入图片描述

3.Lua语法入门

Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。

3.1.初识Lua

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:Lua官网
在这里插入图片描述
Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。
Nginx本身也是C语言开发,因此也允许基于Lua做拓展。

3.1.HelloWorld

CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。

1)在Linux虚拟机的任意目录下,新建一个hello.lua文件
在这里插入图片描述

2)添加下面的内容

print("Hello World!")  

3)运行
在这里插入图片描述

3.2.变量和循环

学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。

3.2.1.Lua的数据类型

Lua中支持的常见数据类型包括:
在这里插入图片描述
另外,Lua提供了type()函数来判断一个变量的数据类型:
在这里插入图片描述
打印结果如下:
在这里插入图片描述

3.2.2.声明变量

Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:

-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true

Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:

-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map =  {name='Jack', age=21}

Lua中的数组角标是从1开始,访问的时候与Java中类似:

-- 访问数组,lua数组的角标从1开始
print(arr[1])

Lua中的table可以用key来访问:

-- 访问table
print(map['name'])
print(map.name)

注意声明变量和打印要在同一行

lua
local str3 = 'hi' .. 'i am' print(str3)

在这里插入图片描述
示例:

local arr = {'java','Pathon','C++'} print(arr[1])

在这里插入图片描述

声明全局变量

arr = {'hello','worl','java'}
print(arr[1])

在这里插入图片描述
声明table

map = {name = 'jack',age = 20}
# 打印元素
print(map['name'])
print(map.name)

在这里插入图片描述

3.2.3.循环

Ctrl + C可以退出Lua指令

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。

遍历数组:

-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
    print(index, value) 
end

遍历普通table

-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
   print(key, value) 
end

示例,编辑hello.lua
在这里插入图片描述

代码如下:

local arr = {'java','C++','Python'}
local map = {name='jack',age=22}

for index,value in ipairs(arr) do
print(index,value)
end


for key,value in pairs(map) do
print(key,value)
end

结果:
在这里插入图片描述

3.3.条件控制、函数

Lua中的条件控制和函数声明与Java类似。

3.3.1.函数

定义函数的语法:

function 函数名( argument1, argument2..., argumentn)
    -- 函数体
    return 返回值
end

例如,定义一个函数,用来打印数组:

function printArr(arr)
    for index, value in ipairs(arr) do
        print(value)
    end
end

示例:继续修改hello.lua

local function printArr(arr)
 for index,value in ipairs(arr) do
 print(index,value)
end
end

local ints = {1,2,3,4,5,6,7}
printArr(ints)

结果
在这里插入图片描述

3.3.2.条件控制

类似Java的条件控制,例如if、else语法:

if(布尔表达式)
then
   --[ 布尔表达式为 true 时执行该语句块 --]
else
   --[ 布尔表达式为 false 时执行该语句块 --]
end

与java不同,布尔表达式中的逻辑运算是基于英文单词:
在这里插入图片描述

3.3.3.案例

需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息
not示例

function printArr(arr)
    if not arr then
        print('数组不能为空!')
    end
    for index, value in ipairs(arr) do
        print(value)
    end
end

另一种写法

local arr = {'java','python','C++'}
local arrnull = nil


function printArr(arr)
 if(nil == arr)
   then print('错误信息')
 else
  for index,value in ipairs(arr) do
    print(index,value)
  end
 end
end

printArr(arrnull)
printArr(arr)

结果:
在这里插入图片描述
and示例:

local banana = 30

local apple = 20

if(banana == 30 and apple == 10)
then
   print('方案一')
else
  print('方案二')
end

结果:

方案二

4.实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。

4.1.安装OpenResty

OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑自定义库

官方网站: https://openresty.org/cn/
在这里插入图片描述
安装Lua可以参考课前资料提供的《安装OpenResty.md》:
在这里插入图片描述
安装OpenResty

4.1.1.安装

首先你的Linux虚拟机必须联网

1)安装开发库

首先要安装OpenResty的依赖开发库,执行命令:

yum install -y pcre-devel openssl-devel gcc --skip-broken
2)安装OpenResty仓库

你可以在你的 CentOS 系统中添加 openresty 仓库,这样就可以便于未来安装或更新我们的软件包(通过 yum check-update 命令)。运行下面的命令就可以添加我们的仓库:

yum-config-manager --add-repo https://openresty.org/package/centos/openresty.repo

如果提示说命令不存在,则运行:

yum install -y yum-utils 

然后再重复上面的命令

3)安装OpenResty

然后就可以像下面这样安装软件包,比如 openresty

yum install -y openresty
4)安装opm工具

opm是OpenResty的一个管理工具,可以帮助我们安装一个第三方的Lua模块。
如果你想安装命令行工具 opm,那么可以像下面这样安装 openresty-opm 包:

yum install -y openresty-opm
5)目录结构

默认情况下,OpenResty安装的目录是:/usr/local/openresty
在这里插入图片描述

看到里面的nginx目录了吗,OpenResty就是在Nginx基础上集成了一些Lua模块。

在这里插入图片描述

6)配置nginx的环境变量

打开配置文件:

vi /etc/profile

在最下面加入两行:

export NGINX_HOME=/usr/local/openresty/nginx
export PATH=${NGINX_HOME}/sbin:$PATH

NGINX_HOME:后面是OpenResty安装目录下的nginx的目录
然后让配置生效:

source /etc/profile
4.1.2.启动和运行

OpenResty底层是基于Nginx的,查看OpenResty目录的nginx目录,结构与windows中安装的nginx基本一致:
在这里插入图片描述
所以运行方式与nginx基本一致:

# 启动nginx
nginx
# 重新加载配置
nginx -s reload
# 停止
nginx -s stop

nginx的默认配置文件注释太多,影响后续我们的编辑,这里将nginx.conf中的注释部分删除,保留有效部分。

修改/usr/local/openresty/nginx/conf/nginx.conf文件,内容如下:

#user  nobody;
worker_processes  1;
error_log  logs/error.log;

events {
    worker_connections  1024;
}

http {
    include       mime.types;
    default_type  application/octet-stream;
    sendfile        on;
    keepalive_timeout  65;

    server {
        listen       8081;
        server_name  localhost;
        location / {
            root   html;
            index  index.html index.htm;
        }
        error_page   500 502 503 504  /50x.html;
        location = /50x.html {
            root   html;
        }
    }
}

在Linux的控制台输入命令以启动nginx:

nginx

然后访问页面:http://192.168.150.101:8081,注意ip地址替换为你自己的虚拟机IP:
在这里插入图片描述

4.1.3.备注

加载OpenResty的lua模块:
继续修改nginx.conf文件添加

#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块     
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";  

在这里插入图片描述
修改监听请求见下面

common.lua

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http not found, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http
}  
return _M

释放Redis连接API:

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

读取Redis数据的API:

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

开启共享词典:

# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m; 

4.2.OpenResty快速入门

我们希望达到的多级缓存架构如图:
在这里插入图片描述

其中:

  • windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群

  • OpenResty集群用来编写多级缓存业务

4.2.1.反向代理流程

现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。

这个请求如下:

在这里插入图片描述

请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:
在这里插入图片描述

我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。

但是这次,我们先在OpenResty接收请求,返回假的商品数据。

4.2.2.OpenResty监听请求

OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:

1)添加对OpenResty的Lua模块的加载

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在其中的http下面,添加下面代码:

#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块     
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";  

2)监听/api/item路径

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:

location  /api/item {
    # 默认的响应类型
    default_type application/json;
    # 响应结果由lua/item.lua文件来决定
    content_by_lua_file lua/item.lua;
}

在这里插入图片描述

这个监听,就类似于SpringMVC中的@GetMapping("/api/item")做路径映射。

content_by_lua_file lua/item.lua则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。

4.2.3.编写item.lua

1)在/usr/loca/openresty/nginx目录创建文件夹:lua

在这里插入图片描述
2)在/usr/loca/openresty/nginx/lua文件夹下,新建文件:item.lua
在这里插入图片描述

3)编写item.lua,返回假数据
item.lua中,利用ngx.say()函数返回数据到Response中,区别界面更改成26寸和199的价格

ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 26寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":19900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

在这里插入图片描述

4)重新加载配置

nginx -s reload

刷新商品页面:

http://localhost:8934/item.html?id=10001

即可看到效果:
在这里插入图片描述

4.3.请求参数处理

上一节中,我们在OpenResty接收前端请求,但是返回的是假数据。

要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。

那么如何获取前端传递的商品参数呢?

4.3.1.获取参数的API

OpenResty中提供了一些API用来获取不同类型的前端请求参数:
在这里插入图片描述

4.3.2.获取参数并返回

在前端发起的ajax请求如图:
在这里插入图片描述

可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID

1)获取商品id

修改/usr/loca/openresty/nginx/nginx.conf文件中监听/api/item的代码,利用正则表达式获取ID:

location ~ /api/item/(\d+) {
    # 默认的响应类型
    default_type application/json;
    # 响应结果由lua/item.lua文件来决定
    content_by_lua_file lua/item.lua;
}

在这里插入图片描述

2)拼接ID并返回

修改/usr/loca/openresty/nginx/lua/item.lua文件,获取id并拼接到结果中返回:

在这里插入图片描述

-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

3)重新加载并测试

运行命令以重新加载OpenResty配置:

nginx -s reload

访问

http://localhost:8934/item.html?id=10002

在这里插入图片描述

刷新页面可以看到结果中已经带上了ID:
在这里插入图片描述

4.4.查询Tomcat

拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:
在这里插入图片描述
需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。
在这里插入图片描述
需求案例如下:
在这里插入图片描述

4.4.1.发送http请求的API

nginx提供了内部API用以发送http请求:

local resp = ngx.location.capture("/path",{
    method = ngx.HTTP_GET,   -- 请求方式
    args = {a=1,b=2},  -- get方式传参数
})

返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。

但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:

 location /path {
     # 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
     proxy_pass http://192.168.150.1:8081; 
 }

原理如图:
在这里插入图片描述

4.4.2.封装http工具

下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。

1)添加反向代理,到windows的Java服务

因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。

修改 /usr/local/openresty/nginx/conf/nginx.conf文件,添加一个location:
注意这里是本机的ip

location /item {
    proxy_pass http://192.168.150.1:8081;
}

以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。

2)封装工具类

之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:
在这里插入图片描述

所以,自定义的http工具也需要放到这个目录下。

/usr/local/openresty/lualib目录下,新建一个common.lua文件:

vi /usr/local/openresty/lualib/common.lua

内容如下:

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http
}  
return _M

这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。

使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。

3)实现商品查询

最后,我们修改/usr/local/openresty/nginx/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:

-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

我们测试先返回一个商品信息
在这里插入图片描述

重启之后可以看到,页面变化

http://localhost:8934/item.html?id=10003

在这里插入图片描述

这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:
在这里插入图片描述

这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。

4.4.3.CJSON工具类

OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。

官方地址: https://github.com/openresty/lua-cjson/

1)引入cjson模块:

local cjson = require "cjson"

2)序列化:

local obj = {
    name = 'jack',
    age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)

3)反序列化:

local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)
4.4.4.实现Tomcat查询

下面,我们修改之前的item.lua中的业务,添加json处理功能:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')

-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)

-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

在这里插入图片描述
重启nginx

nginx -s reload

访问

http://localhost:8934/item.html?id=10004

发现sold和stock都有值了
在这里插入图片描述

4.4.5.基于ID负载均衡

刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:
在这里插入图片描述

因此,OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库

你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。

怎么办?

如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。

也就是说,我们需要根据商品id做负载均衡,而不是轮询。

1)原理

nginx提供了基于请求路径做负载均衡的算法:

nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。

例如:

  • 我们的请求路径是 /item/10001
  • tomcat总数为2台(8081、8082)
  • 对请求路径/item/1001做hash运算求余的结果为1
  • 则访问第一个tomcat服务,也就是8081

只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。

2)实现

修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。

首先,定义tomcat集群,并设置基于路径做负载均衡:

upstream tomcat-cluster {
    hash $request_uri;
    server 192.168.150.1:8081;
    server 192.168.150.1:8082;
}

然后,修改对tomcat服务的反向代理,目标指向tomcat集群:

location /item {
    proxy_pass http://tomcat-cluster;
}

重新加载OpenResty

nginx -s reload
3)测试

启动两台tomcat服务:
在这里插入图片描述

同时启动:
在这里插入图片描述

清空日志后,再次访问页面

http://localhost:8934/item.html?id=10004

可以看到不同id的商品,访问到了不同的tomcat服务:
在这里插入图片描述
在这里插入图片描述
而相同的商品id,多次访问会有缓存

4.5.Redis缓存预热

Redis缓存会面临冷启动问题:

冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。

缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。

我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。

1)利用Docker安装Redis,开启后台运行和持久化

docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes

2)在item-service服务中引入Redis依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3)配置Redis地址

spring:
  redis:
    host: 192.168.150.101

4)编写初始化类

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。

这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }
}

启动后查看redis,发现预热成功
在这里插入图片描述

4.6.查询Redis缓存

现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:
在这里插入图片描述
当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat
4.6.1.封装Redis工具

OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。
修改/usr/local/openresty/lualib/common.lua文件:

1)引入Redis模块,并初始化Redis对象

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

2)封装函数,用来释放Redis连接,其实是放入连接池

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

3)封装函数,根据key查询Redis数据

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

4)导出

-- 将方法导出
local _M = {  
    read_http = read_http,
    read_redis = read_redis
}  
return _M

完整的common.lua:

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http,
    read_redis = read_redis
}  
return _M
4.6.2.实现Redis查询

接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。

查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回

1)修改/usr/local/openresty/lua/item.lua文件,添加一个查询函数:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
    -- 查询本地缓存
    local val = read_redis("127.0.0.1", 6379, key)
    -- 判断查询结果
    if not val then
        ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
        -- redis查询失败,去查询http
        val = read_http(path, params)
    end
    -- 返回数据
    return val
end

2)而后修改商品查询、库存查询的业务:
在这里插入图片描述

3)完整的item.lua代码:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')

-- 封装查询函数
function read_data(key, path, params)
    -- 查询本地缓存
    local val = read_redis("127.0.0.1", 6379, key)
    -- 判断查询结果
    if not val then
        ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
        -- redis查询失败,去查询http
        val = read_http(path, params)
    end
    -- 返回数据
    return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

全部配置完重启nginx

nginx -s reload

先访问

http://localhost:8934/item.html?id=10002

然后停掉IDEA的2个tomcat通过redis缓存访问,发现无误
在这里插入图片描述

4.7.Nginx本地缓存

现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
在这里插入图片描述

4.7.1.本地缓存API

在这里插入图片描述

OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。

1)开启共享字典,在虚拟机中的nginx.conf的http下添加配置:

 # 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
 lua_shared_dict item_cache 150m; 

2)操作共享字典:

-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')
4.7.2.实现本地缓存查询

1)修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:

-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
    -- 查询本地缓存
    local val = item_cache:get(key)
    if not val then
        ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
        -- 查询redis
        val = read_redis("127.0.0.1", 6379, key)
        -- 判断查询结果
        if not val then
            ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
            -- redis查询失败,去查询http
            val = read_http(path, params)
        end
    end
    -- 查询成功,把数据写入本地缓存
    item_cache:set(key, val, expire)
    -- 返回数据
    return val
end

2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:

在这里插入图片描述

其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。

这里给商品基本信息设置超时时间为30分钟,库存为1分钟。

因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。

3)完整的item.lua文件:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
    -- 查询本地缓存
    local val = item_cache:get(key)
    if not val then
        ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
        -- 查询redis
        val = read_redis("127.0.0.1", 6379, key)
        -- 判断查询结果
        if not val then
            ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
            -- redis查询失败,去查询http
            val = read_http(path, params)
        end
    end
    -- 查询成功,把数据写入本地缓存
    item_cache:set(key, val, expire)
    -- 返回数据
    return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

重启nginx

nginx -s reload

监听日志信息

cd /usr/local/openresty/nginx/logs
tail -f error.log

然后访问

http://localhost:8934/item.html?id=10003

日志如下:
在这里插入图片描述
再此访问,无误

http://localhost:8934/item.html?id=10003

在这里插入图片描述
删除redis中的10003缓存
在这里插入图片描述
再此访问

http://localhost:8934/item.html?id=10003

依然访问成功,因为nginx有本地缓存,仅仅用时16ms

在这里插入图片描述

5.缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

5.1.数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

1)基于MQ的异步通知:
在这里插入图片描述
解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新

依然有少量的代码侵入。

2)基于Canal的通知
在这里插入图片描述
解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

代码零侵入

5.2.安装Canal

5.2.1.认识Canal

Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:
在这里插入图片描述

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。
在这里插入图片描述

5.2.2.安装Canal

安装和配置Canal参考课前资料文档:
在这里插入图片描述

安装和配置Canal

下面我们就开启mysql的主从同步机制,让Canal来模拟salve

1.开启MySQL主从

Canal是基于MySQL的主从同步功能,因此必须先开启MySQL的主从功能才可以。

这里以之前用Docker运行的mysql为例:

1.1.开启binlog

打开mysql容器挂载的日志文件,我的在/tmp/mysql_cluster/conf目录:
在这里插入图片描述
修改文件:

vi /tmp/mysql_cluster/conf/my.cnf

添加内容:

log-bin=/var/lib/mysql_cluster/mysql-bin
binlog-do-db=heima

配置解读:

  • log-bin=/var/lib/mysql_cluster/mysql-bin:设置binary log文件的存放地址和文件名,叫做mysql-bin
  • binlog-do-db=heima:指定对哪个database记录binary log events,这里记录heima这个库

配置完成后重启mysql_cluster

docker restart mysql_cluster

最终效果:
在这里插入图片描述

[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql
server-id=1000
log-bin=/var/lib/mysql/mysql-bin
binlog-do-db=heima
1.2.设置用户权限

接下来添加一个仅用于数据同步的账户,出于安全考虑,这里仅提供对heima这个库的操作权限。

create user canal@'%' IDENTIFIED by 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT,SUPER ON *.* TO 'canal'@'%' identified by 'canal';
FLUSH PRIVILEGES;

在这里插入图片描述

重启mysql容器即可

docker restart mysql

测试设置是否成功:在mysql控制台,或者Navicat中,输入命令:

show master status;

在这里插入图片描述

2.安装Canal
2.1.创建网络

我们需要创建一个网络,将MySQL、Canal、MQ放到同一个Docker网络中:

docker network create heima

让mysql加入这个网络:

docker network connect heima mysql
2.2.安装Canal

课前资料中提供了canal的镜像压缩包:
在这里插入图片描述
大家可以上传到虚拟机,然后通过命令导入:
在这里插入图片描述

docker load -i canal.tar

然后运行命令创建Canal容器:

docker run -p 11111:11111 --name canal \
-e canal.destinations=heima \
-e canal.instance.master.address=mysql:3306  \
-e canal.instance.dbUsername=canal  \
-e canal.instance.dbPassword=canal  \
-e canal.instance.connectionCharset=UTF-8 \
-e canal.instance.tsdb.enable=true \
-e canal.instance.gtidon=false  \
-e canal.instance.filter.regex=heima\\..* \
--network heima \
-d canal/canal-server:v1.1.5

说明:

  • -p 11111:11111:这是canal的默认监听端口
  • -e canal.instance.master.address=mysql:3306:数据库地址和端口,如果不知道mysql容器地址,可以通过docker inspect 容器id来查看
  • -e canal.instance.dbUsername=canal:数据库用户名
  • -e canal.instance.dbPassword=canal :数据库密码
  • -e canal.instance.filter.regex=:要监听的表名称

表名称监听支持的语法:

mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\) 
常见例子:
1.  所有表:.*   or  .*\\..*
2.  canal schema下所有表: canal\\..*
3.  canal下的以canal打头的表:canal\\.canal.*
4.  canal schema下的一张表:canal.test1
5.  多个规则组合使用然后以逗号隔开:canal\\..*,mysql.test1,mysql.test2 

启动后,查看日志

docker logs -f canal

在这里插入图片描述
输入指令

docker exec -it canal bash

查看运行日志

tail -f canal-server/logs/canal/canal.log 
tail -f canal-server/logs/heima/heima.log

在这里插入图片描述

5.3.监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。
在这里插入图片描述

我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client

与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。

5.3.1.引入依赖:
<dependency>
    <groupId>top.javatool</groupId>
    <artifactId>canal-spring-boot-starter</artifactId>
    <version>1.2.1-RELEASE</version>
</dependency>
5.3.2.编写配置:
canal:
  destination: heima # canal的集群名字,要与安装canal时设置的名称一致
  server: 192.168.150.101:11111 # canal服务地址
5.3.3.修改Item实体类

通过@Id、@Column、等注解完成Item与数据库表字段的映射:

package com.heima.item.pojo;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;

import javax.persistence.Column;
import java.util.Date;

@Data
@TableName("tb_item")
public class Item {
    @TableId(type = IdType.AUTO)
    @Id
    private Long id;//商品id
    @Column(name = "name")
    private String name;//商品名称
    private String title;//商品标题
    private Long price;//价格(分)
    private String image;//商品图片
    private String category;//分类名称
    private String brand;//品牌名称
    private String spec;//规格
    private Integer status;//商品状态 1-正常,2-下架
    private Date createTime;//创建时间
    private Date updateTime;//更新时间
    @TableField(exist = false)
    @Transient
    private Integer stock;
    @TableField(exist = false)
    @Transient
    private Integer sold;
}
5.3.4.编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;

import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;

@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {

    @Autowired
    private RedisHandler redisHandler;
    @Autowired
    private Cache<Long, Item> itemCache;

    @Override
    public void insert(Item item) {
        // 写数据到JVM进程缓存
        itemCache.put(item.getId(), item);
        // 写数据到redis
        redisHandler.saveItem(item);
    }

    @Override
    public void update(Item before, Item after) {
        // 写数据到JVM进程缓存
        itemCache.put(after.getId(), after);
        // 写数据到redis
        redisHandler.saveItem(after);
    }

    @Override
    public void delete(Item item) {
        // 删除数据到JVM进程缓存
        itemCache.invalidate(item.getId());
        // 删除数据到redis
        redisHandler.deleteItemById(item.getId());
    }
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }

    public void saveItem(Item item) {
        try {
            String json = MAPPER.writeValueAsString(item);
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        } catch (JsonProcessingException e) {
            throw new RuntimeException(e);
        }
    }

    public void deleteItemById(Long id) {
        redisTemplate.delete("item:id:" + id);
    }
}

重启测试
看到IDEA控制台一直有输出:
在这里插入图片描述

访问

http://localhost:8081/item/10001

在这里插入图片描述

再看IDEA中有static
在这里插入图片描述

直接访问

http://localhost:8081/

修改第一个商品
在这里插入图片描述
修改尺寸和价格
在这里插入图片描述
再此访问

http://localhost:8081/item/10001

在这里插入图片描述
再去查看redis,发现同步修改成功
在这里插入图片描述
总结:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1514804.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

优雅的记录日志,拒绝打印模糊信息导致bug定位难

想必大家都有过这样的经历&#xff1a;在项目中遇到报错需要紧急修复时&#xff0c;却因为日志信息模糊不清&#xff0c;无法迅速准确地定位到错误源头&#xff0c;这确实让人感到十分苦恼和无奈。 在新入职一家公司并着手修改遗留bug时&#xff0c;经常发现之前的开发者并未记…

用云服务器构建gpt和stable-diffusion大模型

用云服务器构建gpt和stable-diffusion大模型 一、前置知识二、用云端属于自己的聊天chatGLM3step1、项目配置step2、环境配置1、前置知识2、环境配置流程 step3、创建镜像1、前置知识2、创建镜像流程 step4、通过 Gradio 创建ChatGLM交互界面1、前置知识2、创建ChatGLM交互界面…

利用HubSpot出海CRM和人工智能技术提升出海业务的效率和效果

在当今数字化时代&#xff0c;智能化营销已经成为企业获取客户和扩大市场份额的关键策略。特别是对于出海业务而言&#xff0c;利用智能化营销技术来应对不同文化、语言和市场的挑战&#xff0c;已经成为企业竞争的关键优势。今天运营坛将带领大家探讨如何利用HubSpot CRM和人工…

JVM 重要知识梳理

一、java内存区域 程序计数器&#xff1a;线程私有&#xff0c;唯一一个不会出现outOfMemoryError的内存区域虚拟机栈&#xff1a;线程私有&#xff0c;栈由一个个栈帧组成&#xff0c;而每个栈帧中都拥有&#xff1a;局部变量表、操作数栈、动态链接、方法返回地址。本地方法…

Prompt Learning:人工智能的新篇章

开篇&#xff1a;AI的进化之旅 想象一下&#xff0c;你正在和一位智能助手对话&#xff0c;它不仅理解你的问题&#xff0c;还能提出引导性的问题帮助你更深入地思考。这正是prompt learning的魔力所在——它让机器学习模型变得更加智能和互动。在这篇博客中&#xff0c;我们将…

【JavaScript】面试手撕柯里化函数

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 引入柯里化定义实现快速使用柯里化的作用提高自由度bind函数 参考资料 引入 上周…

git区域与对象

大纲 工作区(workspace directory):本机的代码项目,是一种沙箱环境 暂存区(stage index):工作区在程序员写程序的过程中会发生无数次改动&#xff0c;git不可能记录每一次的改动&#xff0c;这些改动的过程在暂存区负责记录&#xff0c;暂存区会将最终的状态随着程序员的提交…

springboot与elasticsearch-7.16.2的基础CRUD使用——入门向

highlight: an-old-hope 基于elasticsearch-7.16.2 &#xff0c;使用的是旧版的高级客户端 restHighLevelClient springboot版本2.6.13 项目原代码地址 https://gitee.com/kenwm/es7demo.git 参考博客 1、SpringBoot集成ElasticSearch&#xff0c;实现模糊查询&#xff0c;批…

学python新手如何安装pycharm;python小白如何安装pycharm

首先找到官网&#xff1a; Download PyCharm: The Python IDE for data science and web development by JetBrains 打开后选择下载&#xff0c;下图标红部分 点击exe程序&#xff0c;点击下一步&#xff01; 选择安装路径&#xff0c;下一步 弹出界面全选 选择默认 然后直接…

Spring核心接口:BeanFactory接口

一图胜千言 BeanFactory 属性&方法解析 点击展开注意&#xff1a;以上代码仅供参考&#xff0c;可能存在不完整或不准确的情况。 public interface BeanFactory {// 根据Bean名称返回Bean实例。// 如果Bean不存在&#xff0c;则抛出NoSuchBeanDefinitionException异常。Obj…

华为机考:HJ43 迷宫问题

华为机考&#xff1a;HJ43 迷宫问题 描述 DFS 从迷宫入口开始进行dfs搜索&#xff0c;每次进入一个点&#xff0c;将其加入临时路径数组中&#xff0c;把该位改成0表示不能进入&#xff0c;然后依次搜索该位下、右、上、左四个方向的点&#xff0c;如果搜索的这个点可以进入则…

【机器学习智能硬件开发全解】(二)—— 政安晨:嵌入式系统基本素养【处理器原理】

嵌入式系统的基本素养包括以下几个方面&#xff1a; 硬件知识&#xff1a;嵌入式系统通常由硬件和软件组成&#xff0c;了解和熟悉硬件的基本知识&#xff0c;包括微处理器、存储器、外设等&#xff0c;并了解它们的工作原理和特性。 软件编程&#xff1a;熟悉至少一种编程语言…

STM32模拟I2C控制TM1650数码管显示电压电流

模拟I2C控制TM1650数码管显示电压电流 数码管的逻辑TM1650 原理模拟I2C的实现TM1650驱动电压电流显示 数码管的逻辑 通过数码管来表示字符。 数码管的abcdefg和dp分别对应这发送过去的8位数据位比如0x3F -> 0011 1111 表示0字符。 如果要加上小数点则在最高位加一&#xf…

同步整流芯片 支持12V降5V 24V降5V 24V降12V 降压芯片 H4122

惠海H4122降压恒压芯片的工作原理&#xff1a; 主要是通过内部电路和算法来控制和调节输出电压&#xff0c;使其保持恒定。 输入电压&#xff1a;芯片接收一个较高的输入电压&#xff0c;如12V、24V或36V。 开关电源转换器&#xff1a;芯片内部通常包含一个或多个开关电源转…

【python pyinstaller库】pyinstaller介绍、安装、以及相关重点知识

PyInstaller是一个在Windows、GNU/Linux、macOS等平台下将Python程序冻结&#xff08;打包&#xff09;为独立可执行文件的工具, 用于在未安装Python的平台上执行Python编写的应用程序。 相比类似工具&#xff0c;它的主要优点是 PyInstaller 与 Python 3.7-3.10 一起工作&…

StarRocks实战——云览科技存算分离实践

目录 背景 一、平台现状&痛点 1.1 使用组件多&#xff0c;维护成本高 1.2 链路冗长&#xff0c;数据时效性难以保证 1.3 服务稳定性不足 二、StarRocks 存算分离调研 2.1 性能对比 2.2 易用性 2.3 存储成本 三、StarRocks 存算分离实践 3.1 查询优化 3.1.1 物化…

SyntaxError: Unexpected end of JsON input J50N.parse....报错

const userInfoJSON.parse(uni.getStorageSync(userInfo))改成 const userInfouni.getStorageSync(userInfo)&& JSON.parse(uni.getStorageSync(userInfo)) //不报错

ChatGPT国内能用吗?中国用户怎么才能使用ChatGPT?

与ChatGPT类似的国内网站&#xff0c;他们都能提供和ChatGPT相似的能力&#xff0c;而且可以在国内直接使用。 点击直达方式 百科GPT官网&#xff1a;baikegpt.cn ChatGPT是基于GPT-3.5架构的语言模型的一个实例&#xff0c;由OpenAI开发。以下是ChatGPT的发展历史&#xff1…

深入理解Python中的面向对象编程(OOP)【第129篇—Scikit-learn的入门】

深入理解Python中的面向对象编程&#xff08;OOP&#xff09; 在Python编程领域中&#xff0c;面向对象编程&#xff08;Object-Oriented Programming&#xff0c;简称OOP&#xff09;是一种强大而灵活的编程范式&#xff0c;它允许开发者以对象为中心组织代码&#xff0c;使得…

Redis7.2.4分片集群搭建

Redis分片集群搭建 1.集群结构 分片集群需要的节点数量较多&#xff0c;这里我们搭建一个最小的分片集群&#xff0c;包含3个master节点&#xff0c;每个master包含一个slave节点&#xff0c;结构如下&#xff1a; 信息如下&#xff1a; IPPORT角色glnode036379slaveglnode0…