【算法】一类支持向量机OC-SVM(1)

news2025/4/20 11:36:22

【算法】一类支持向量机OC-SVM

  • 前言
  • 一类支持向量机OC-SVM 概念介绍
  • 示例编写
    • 数据集创建
    • 实现一类支持向量机OC-SVM
    • 完整的示例输出


前言

由于之前毕设期间主要的工具就是支持向量机,从基础的回归和分类到后来的优化,在接触到支持向量机还有一类支持向量机的,对其产生了一定的兴趣,并对研究过程中的相关示例进行记录,主要是基础的一类支持向量机OC-SVM示例蜂群算法优化一类支持向量机超参数示例,方便后续的查看。

一类支持向量机OC-SVM 概念介绍

OC-SVM(One-Class Support Vector Machine)是一种支持向量机(Support Vector Machine,SVM)的变体,用于异常检测和异常检测问题。与传统的SVM只能处理二分类问题不同,OC-SVM旨在通过仅使用正例样本来学习一个描述正例样本特征的超平面,并尽可能将负例样本远离该超平面。

在OC-SVM中,训练样本仅包含正例样本,目标是找到一个最优的超平面,使得正例样本尽可能地位于该超平面上方,并使负例样本尽可能地位于该超平面下方。这样,当新的样本点被映射到特征空间时,可以根据其相对于超平面的位置进行分类,从而判断其是否为异常样本。

该介绍不那么通俗易懂,看了一篇文章,简单的说,以前的svm 分类有明细的划分,现在的oc-svm则只有一个类别的划分,也就是正例,至于其他的都归属于负例。这个在大神的知乎文章什么是一类支持向量机(one class SVM),是指分两类的支持向量机吗?中有通俗的例子讲解,这边不进行重复论述。

示例编写

主要是基于vscode 编译器展开python的编写,只需要在扩展中下载Python 插件即可。
在这里插入图片描述

数据集创建

数据集包括测试与训练集,由于一类支持向量机OC-SVM在示例中只要采用python 中的OneClassSVM,而它返回的预测标签如果 正常数据点返回 1,异常点返回 -1 ,因此在数据集的标签要做相应的处理,正例为1,负例为-1。

# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))

实现一类支持向量机OC-SVM

主要采用OneClassSVM,也是sklearn库里面的,pip 一下就行。使用起来跟svm 基本一样。

# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
  • ‘nu’ 参数来控制错误率的上界和支持向量的比例
  • ‘kernel’ 参数可以选择核函数,例如 ‘rbf’ 代表径向基函数核
  • ‘gamma’ 是 ‘rbf’, ‘poly’ 和 ‘sigmoid’ 核函数的系数
  • ‘shrinking’ 参数如果设为 True,则会使用启发式收缩
  • ‘tol’ 是停止训练的误差值大小
  • ‘cache_size’ 是指定训练时使用的缓存大小
  • ‘verbose’ 是控制日志输出的数量

这个可以直接看源码的注释,里面都有介绍。

完整的示例输出

# demo
from sklearn import svm
import numpy as np

# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
print(binary_array)

# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)

# 训练模型
ocsvm.fit(X,binary_array)

# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))
# print(X_test)
print("--------------")
predictions = ocsvm.predict(X_test)

# 输出预测结果
print(predictions)
print("--------------")
# 也可以使用 decision_function 方法来获取每个样本到决策边界的距离
# 负数通常表示异常值
distances = ocsvm.decision_function(X_test)
print(distances)

在这里插入图片描述
从输出的结果来看,有2组示例预测为负例,然后可以通过与真实标签比较,调整超参数来提交预测的精度。也可以嵌入寻优方法,这个在往期博文都有介绍,比如ga、pso等等。

在资源中上传了用蜂群算法优化一类支持向量机超参数的2个示例,有需要可以直接下载使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1513937.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

能发顶会!GNN结合LLMs的三大创新思路!新SOTA准确率提升10倍

LLMs在处理NLP任务方面表现出色,而GNNs在挖掘和分析复杂关系数据(图数据)方面展现出其卓越的能力。这种趋势催生了将这两种技术整合的研究兴趣,为解决更多领域的实际问题。GNN结合LLMs也逐渐成为了研究的热点。 GNNLLMs可以发挥二…

使用Docker管理linux容器

文章目录 一、使用docker管理镜像 二、使用docker管理容器 一、使用docker管理镜像 1、安装操作系统,我安装的是centOS 7 ,因为centos7有着非常丰富的软件仓库,方便后续安装与docker相关的软件。 2、初始化设置, 关闭防火墙 关闭…

有来团队后台项目-解析7

sass 安装 因为在使用vite 创建项目的时候,已经安装了sass,所以不需要安装。 如果要安装,那么就执行 npm i -D sass 创建文件 src 目录下创建文件 目录结构如图所示: reset.scss *, ::before, ::after {box-sizing: border-box;border-color: currentcolor;border-st…

未来已来:科技驱动的教育变革

我们的基础教育数百年来一成不变。学生们齐聚在一个物理空间,听老师现场授课。每节课时长和节奏几乎一致,严格按照课表进行。老师就像“讲台上的圣人”。这种模式千篇一律,并不适用于所有人。学生遇到不懂的问题,只能自己摸索或者…

案例LocalDate ,Map集合,split方法分割,集合、Random随机数、多态、封装

case1&#xff1a; 集合、Random随机数、多态、封装 ShootOddPeople类 package com.zz.examine.case1;import java.util.ArrayList; import java.util.List; import java.util.Random;/****/ public class ShootOddPerson {public static List<People> peoples new Ar…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的零售柜商品检测软件(Python+PySide6界面+训练代码)

摘要&#xff1a;开发高效的零售柜商品识别系统对于智能零售领域的进步至关重要。本文深入介绍了如何运用深度学习技术开发此类系统&#xff0c;并分享了全套实现代码。系统采用了领先的YOLOv8算法&#xff0c;并与YOLOv7、YOLOv6、YOLOv5进行了性能比较&#xff0c;呈现了诸如…

CTP-API开发系列之九:行情登录及订阅代码

CTP-API开发系列之九&#xff1a;行情登录及订阅代码 前情回顾全局配置参数行情初始化代码行情登录行情订阅行情接收注意事项 前情回顾 CTP-API开发系列之一&#xff1a;各版本更新说明&#xff08;持续更新&#xff09; CTP-API开发系列之二&#xff1a;问题汇总&#xff08;…

ONLYOFFICE 文档开发者版,为您的平台带来强大的文档编辑功能

你是否在寻找一个可自主部署、可定制、易集成的文档编辑器解决方案&#xff1f;如果是这样&#xff0c;那么ONLYOFFICE 文档开发者版&#xff0c;也许就是你想要的答案。下面让我们一起来看看它有哪些特点&#xff0c;并能为您带来哪些好处。 什么是 ONLYOFFICE 文档 ONLYOFFI…

06-kafka及异步通知文章上下架-黑马头条

kafka及异步通知文章上下架 1)自媒体文章上下架 需求分析 2)kafka概述 消息中间件对比 特性ActiveMQRabbitMQRocketMQKafka开发语言javaerlangjavascala单机吞吐量万级万级10万级100万级时效性msusmsms级以内可用性高&#xff08;主从&#xff09;高&#xff08;主从&#…

OpenMP 编程模型

OpenMP 内存模型 共享内存模型&#xff1a; OpenMP 专为多处理器/核心、共享内存机器设计&#xff0c;底层架构可以是共享内存UMA或NUM OpenMP 执行模型 基于线程的并行&#xff1a; OpenMP 程序基于多线程来实现并行&#xff0c; 线程是操作系统可以调度的最小执行单元。 …

【C++】string进一步介绍

个人主页 &#xff1a; zxctscl 如有转载请先通知 文章目录 1. 前言2. 迭代器2.1 反向迭代器2.2 const对象迭代器 3. Capacity3.1 size和length3.2 max_size3.3 capacity3.4 clear3.5 shrink_to_fit &#xff08;了解即可&#xff09;3.6 reserve3.7 resize 4. Element access4…

Orange3数据预处理(离散化组件)

离散化&#xff1a;将数值属性转换为分类属性。 输出 数据&#xff1a;具有离散化值的数据集 设置离散化的默认方法。 选择变量以为每个变量设置特定的离散化方法。将鼠标悬停在变量上显示区间。 离散化方法Keep numeric(保持数值)&#xff1a;保持变量不变。Remove (移除)&a…

【强化学习抓取】偏机器人领域(略)

文章目录 1. A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep Reinforcement Learning from Vision and Touch摘要和结论引言相关工作模型框架 1. A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep Reinforcement Learni…

2024年GitHub标星2-9K的Android基础——高级面试题合集

3、横竖屏切换时候 Activity 的生命周期 4、AsyncTask 的缺陷和问题&#xff0c;说说他的原理。 5、onSaveInstanceState() 与 onRestoreIntanceState() Android高级面试题 1、你们做了哪些稳定性方面的优化&#xff1f; 2、性能稳定性是怎么做的&#xff1f; 3、业务稳定性如…

计算机如何处理异常

前言 大家好&#xff0c;我是jiantaoyab&#xff0c;这篇文章主要计算机究竟是如何处理异常的&#xff0c;异常可以分成中断、陷阱、故障、中止这样四种情况。这四种异常&#xff0c;分别对应着 I/O 设备的输入、程序主动触发的状态切换、异常情况下的程序出错以及出错之后无可…

新手做抖音小店怎么能做起来吗?手把手教你,从零到做好只需3步

大家好&#xff0c;我是电商花花。 做抖音小店的新手卖家都会把月入过万作为做抖音小店的目标&#xff0c;在没有接触抖音小店之前都羡慕别人的店铺能够够稳定出单&#xff0c;月入过万&#xff0c;甚至更多。 可当自己在操作店铺的时候&#xff0c;要么就是没有流量&#xf…

CVE-2024-2074 SpringBoot迷你天猫商城Mini-Tmall sql注入漏洞分析

漏洞简介 Mini-Tmall是一个基于Spring Boot的迷你天猫商城。Mini-Tmall在20231017版本及之前存在一个严重的漏洞&#xff0c;攻击者可以利用该漏洞通过远程执行特定操作来注入恶意SQL语句&#xff0c;从而获取敏感信息或控制数据库。此漏洞影响文件?rtmall/admin/user/1/1的一…

C语言例2-2:从键盘输入两个整数,计算其乘积(利用用户自定义函数实现)

代码如下&#xff1a; //从键盘输入两个整数&#xff0c;计算其乘积&#xff08;利用用户自定义函数实现&#xff09;。 #include<stdio.h> int mul(int a, int b) //定义一个函数mul {int c; //定义一个整型…

深克隆和浅克隆有什么区别?

1、典型回答 克隆是指创建一个对象的副本&#xff0c;使副本具有与原始对象相同的属性和状态。在计算机编程中&#xff0c;克隆是一种常见的操作&#xff0c;用于复制数据、对象或数据结构&#xff0c;以便在不影响原始数据的情况下进行操作、修改或分发。 克降最典型的使用场…

Linux -- 线程互斥

一 线程互斥的概念 大部分情况&#xff0c;线程使用的数据都是局部变量&#xff0c;变量的地址空间在线程栈空间内&#xff0c;这种情况&#xff0c;变量归属单个线程&#xff0c;其他线程无法获得这种变量。但有时候&#xff0c;很多变量都需要在线程间共享&#xff0c;这样的…