【DataWhale学习】用免费GPU线上跑StableDiffusion项目实践

news2025/1/15 7:02:35

用免费GPU线上跑SD项目实践

​ DataWhale组织了一个线上白嫖GPU跑chatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我前两天刚跟着B站秋叶大佬和Nenly大佬的视频学习过,但是生成某些图片显存吃紧,想线上部署尝试一下。

参考:DataWhale 学习手册链接

1 学习简介

本文以趋动云平台为例,详细介绍下如何通过平台提供的在线开发环境,直接在云端编写、运行代码,并使用GPU资源进行加速。本教程将学习云算力资源的使用方式,并给出了两个AI项目实践:

  • 用免费GPU创建属于自己的聊天GPT
  • 用免费GPU部署自己的stable-diffusion

平台注册:

  • 注册即送168元算力金
  • Datawhale专属注册链接:https://growthdata.virtaicloud.com/t/SA

适用人群

  • 新手开发者、快速原型设计者;
  • 需要协作和分享的团队;
  • 对大模型部署感兴趣的人;
  • 深度学习入门学习者;
  • 对使用GPU资源有需求的人。

优势:

无需进行本地环境配置,简单易用,便于分享和协作。

组织方:Datawhale x 趋动云

3 云端部署StableDiffusion模型

3.1 项目配置

  1. 创建项目

    在趋动云用户工作台中,点击 快速创建 ,选择 创建项目,创建新项目。

  2. 镜像配置

    选择 趋动云小助手AUTOMATIC1111/stable-diffusion-webui 镜像。

    image-20240311172651842

  3. 数据集配置

    公开 数据集中,选择 stable-diffusion-models 数据集。

    1710149308792

    配置完成后,点击创建,要求上传代码时,选择 暂不上传

  4. 初始化开发环境

    找到最右侧 “开发”-> “初始化开发环境实例”,我这里没按教程配置,因为SD生图需要较大显存,我选择了拥有24G显存的 B1.large,其他按教程一样,并设置了24h的最长运行时间。

    image-20240311173442914

3.2 环境配置

​ 因为数据集代码有所变化,所以教程中有些步骤可以省略,以下为具体步骤。

  1. 解压代码及模型

    tar xf /gemini/data-1/stable-diffusion-webui.tar -C /gemini/code/ 
    
  2. 拷贝frpc内网穿透文件

    chmod +x /root/miniconda3/lib/python3.10/site-packages/gradio/frpc_linux_amd64_v0.2
    
  3. 拷贝模型文件到项目目录下

    cp /gemini/data-1/v1-5-pruned-emaonly.safetensors /gemini/code/stable-diffusion-webui/
    
  4. 更新系统httpx依赖

    pip install httpx==0.24.1
    
  5. 运行项目

    cd /gemini/code/stable-diffusion-webui && python launch.py --deepdanbooru --share --xformers --listen
    

    运行项目后,点击右侧添加,创建 外部访问链接

    1710149802068

  6. 访问StableDiffusion的WebUI

    复制外部访问链接,在浏览器粘贴并访问,就成功打开WebUI界面啦。

    1710149919322

  7. 生成镜像

    点击右上角 将当前环境制作为镜像,点击 智能生成,在 AUTOMATIC1111/stable-diffusion-webui 基础镜像下生成,点击 构建,完成对镜像的构建。

    image-20240311175121573

    之后安装上一章的步骤,将镜像配置到你的项目里就好啦。

配置好环境后,再次访问,在终端输入以下指令直接运行 WebUI 。

cd /gemini/code/stable-diffusion-webui && python launch.py --deepdanbooru --share --xformers --listen

3.3 StableDiffusion 使用

  1. 生成第一张美图

    部署好了当然是要生成一张图,我选择生成一张猫猫图,结果如下。

    image-20240312104308881

    ​ 库自带的模型是 v1-5-pruned-emaonly 模型,这个模型是官方的1.5 版本预训练模型,是在512*512的小尺寸图像上训练的,所以说如果图像尺寸超过1000的话,容易出现多头多人的情况。

    ​ 在这里我选择的参数与提示词如下:

    • 提示词(prompt)

      1 cat
      
    • 负面提示词(Negative prompt)

      out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs,
      
    • 迭代步数(Steps)采样器(Sampler)提示词相关性(CFG scale)

      Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, 
      
    • 随机种子(Seed)图像尺寸(Size)模型(Model)

      Seed: 3052626755, Size: 384x512, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Version: v1.6.0
      

    生成的猫猫图如下:

    img

  2. 批量生成

    我想要更多的猫猫图,于是增大了生成的 Batch CountBatch size,生成结果如下。

    image-20240312111137432

    可以看到一下生成了16张猫猫图,它实际上是分了两批,每批生成8张,这样生成的。Batch count 控制了生成批次的数量,Batch size 控制每批生成图片的数量。Batch size 越大对显卡显存要求越高,当然白嫖的24g显存不在话下了。

    img

    可以看到生成的图像各有千秋,甚至有的生成了个房子(太离谱了),所以选择合适的种子很重要。可以通过批量生成找到自己喜欢的图像风格的种子,固定下来进行进一步操作。

    我很喜欢第四张,大脸狸花猫,于是点开图片,可以在图片下方看到种子号 2617670965

    image-20240312112233897

  3. 图像放大

    我想放大刚才选中的大脸狸花猫图,可以通过固定种子,并通过 Hires fix 的方法放大生成图像。

    我想使用一个名为 R-ESRGAN4x 的放大算法,从云平台下载太慢了,选择从 该github链接 本地下载,并放在/gemini/code/stable-diffusion-webui/models/RealESRGAN/RealESRGAN_x4plus.pth路径下。

    设置以下参数,重新生成,结果如下。

    image-20240312113245064

    成功将图像尺寸放大到原来的两倍,即 768*1024 的尺寸。图像参数如下:

    1 cat
    Negative prompt: out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs,
    Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 2617670965, Size: 384x512, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Denoising strength: 0.35, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+, Version: v1.6.0
    

    猫猫图如下:

    00019-2617670965

    效果还不错,不过我还想让他更清晰一点,于是选择让他放大4倍,结果如下。

    img

    可以看到,真的清晰了不少。

  4. 图生图

    图生图就是以给的图片为基准,生成其他的图片,我就像用刚才生成的猫猫图,来生成一个宇宙的星系,于是写了以下的提示词。

    stars,out space,galaxy,
    

    负面提示词不变,分两个批次生成16张星系图片,结果如下。

    image-20240312123732068

    可以看到,生成了具有猫猫形状的星系图案,我从中挑了一张最喜欢的,就是下面这张。

    img

    图片参数如下:

    stars,out space,galaxy,
    Negative prompt: out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs,
    Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 3, Seed: 3318537879, Size: 768x1024, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Denoising strength: 0.7, Version: v1.6.0
    

    以上就尝试玩SD的基本功能啦,之后可以再玩一些进阶玩法,用更厉害的模型,添加lora、ControlNet等插件,生成更可控好看的图片。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1513855.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构】顺序表的实现

文章目录 **线性表(linear):****顺序表****下列是需要实现的接口(Seqlist.h)****顺序表的初始化****顺序表的插入数据****顺序表的扩容(为插入数据提供保障)****顺序表的尾插****顺序表的头插****顺序表的删除数据****顺序表的尾删****顺序表的头删****查找指定位置…

下载API文档

在线看:Overview (Java SE 17 & JDK 17) 离线下载:Java Development Kit 17 Documentation

【Sql】MVCC有关问题,以及锁,日志和主从复制原理

目录 MVCC 解决什么问题? 实现原理 隐式字段 undo log Read View(读视图) InnoDB 对 MVCC 的实现 锁 分类 锁升级? InnoDB 的行锁? 死锁避免? 乐观锁和悲观锁 日志 主从复制原理 主从复制的作用 MySQL主从复制解决的问题 涉…

模型量化(二)—— 训练后量化PTQ(全代码)

训练后量化(Post-training Quantization,PTQ)是一种常见的模型量化技术,它在模型训练完成之后应用,旨在减少模型的大小和提高推理速度,同时尽量保持模型的性能。训练后量化对于部署到资源受限的设备上&…

【阿里云系列】-利用yaml文件部署NacosXxl-job到ACK

背景介绍 随着容器化的技术成熟落地,拥抱各种成熟的容器化集群平台是加速我们落地的必然之路,目前国内以阿里云、华为云、腾讯云为平台的供应商为主,国外则以AWS,Azure为主,让我们借助平台已有的优势进行快速落地提高…

指针【理论知识速成】(3)

一.指针的使用和传值调用&#xff1a; 在了解指针的传址调用前&#xff0c;先来额外了解一下 “传值调用” 1.传值调用&#xff1a; 对于来看这个帖子的你相信代码展示胜过千言万语 #include <stdio.h> #include<assert.h> int convert(int a, int b) {int c 0…

log4j2.xml介绍和使用

log4j2.xml是什么 log4j2.xml 是用于配置 Apache Log4j 2 的 XML 格式配置文件。Log4j 2 是一个用于 Java 应用的流行日志框架&#xff0c;提供灵活的日志管理和配置。在 log4j2.xml 文件中&#xff0c;可以配置日志记录的格式、级别、目的地等。 下面是一些主要节点和属性的…

内容管理平台原来对企业这么重要,看完收藏!

“内容为王”&#xff0c;这是当今数字化时代的一个重要真理。不论是创业新贵、还是行业巨头&#xff0c;纷纷开始深入理解和应用内容管理平台&#xff08;Content Management System&#xff0c;简称CMS&#xff09;&#xff0c;以便更好的管理其大量的内容和信息。 那么&…

网络安全从业人员何去何从

从2024年1月1日开始到今天&#xff0c;基本没有真正放下自己休息过一天。可能很多人会说是卷&#xff0c;其实真正的原因是压力。不仅仅是生活压力还有行业压力。 今年这个行业让很多人开始感到了迷茫&#xff0c;不仅是股市的低迷&#xff0c;更多的来自于各大公司不断的因为…

什么是架构?架构设计原则是哪些?什么是设计模式?设计模式有哪些?

什么是架构?架构设计原则是哪些?什么是设计模式?设计模式有哪些? 架构的本质 架构本身是一种抽象的、来自建筑学的体系结构,其在企业及IT系统中被广泛应用。 架构的本质是对事物复杂性的管理,是对一个企业、一个公司、一个系统复杂的内部关系进行结构化、体系化的抽象,…

Stable-Diffusion的WebUI部署实战

1、环境准备及安装 1.1、linux环境 # 首先&#xff0c;已经预先安装好了anaconda&#xff0c;在这里新建一个环境 conda create -n sdwebui python3.10 # 安装完毕后&#xff0c;激活该环境 conda activate sdwebui# 安装 # 下载stable-diffusion-webui代码 apt install wget…

String 底层是如何实现的?

1、典型回答 String 底层是基于数组实现的&#xff0c;并且数组使用了 final 修饰&#xff0c;不同版本中的数组类型也是不同的&#xff1a; JDK9 之前&#xff08;不含JDK9&#xff09; String 类是使用 char[ ]&#xff08;字符数组&#xff09;实现的但 JDK9 之后&#xf…

C#版开源免费的Bouncy Castle密码库

前言 今天大姚给大家分享一款C#版开源、免费的Bouncy Castle密码库&#xff1a;BouncyCastle。 项目介绍 BouncyCastle是一款C#版开源、免费的Bouncy Castle密码库&#xff0c;开发人员可以通过该项目在他们的 C# 应用程序中使用 Bouncy Castle 提供的各种密码学功能&#x…

如何使用 Langchain、Ollama 和 Streamlit 构建 RAG

一、先决条件&#xff1a;您需要了解什么 在深入讨论技术细节之前&#xff0c;我们先概述一下先决条件。Python 的基础知识至关重要&#xff0c;因为它是我们将使用的主要语言。熟悉机器学习和自然语言处理的基本概念将帮助您更轻松地掌握这些概念。此外&#xff0c;对 Langch…

瑞熙贝通实验室物联网管理平台新升级|支持远程开门视频监控与电源控制以及环境监测

瑞熙贝通实验室智能物联网管控平台&#xff1a;利用“互联网与物联网技术”有机融合&#xff0c;对实验室的用电安全监测、实验室环境异常监测&#xff08;颗粒物监测、明火监测、可燃气体、烟雾监测、温湿度传感器、红外人体感应&#xff09;、实验室人员安全准入、万物互联等…

16、技巧之九: 修改参数,如何让表格翻页滚动到底部?【Selenium+Python3网页自动化总结】

1、问题提出 在网页配置参数时&#xff0c;输入参数名称搜索&#xff0c;搜出来的同名参数结果有多个&#xff0c;分布在一个表格的不同行&#xff0c;表格是动态加载的&#xff0c;需要滚动鼠标才能把所出参数找出来。用selenium怎么实现这种参数修改&#xff1f; 2、网页元素…

数字工厂管理系统和ERP管理系统有什么区别

在制造业的数字化转型浪潮中&#xff0c;数字工厂管理系统和ERP管理系统作为两大核心系统&#xff0c;扮演者不可或缺的角色。虽然它们都是为了提高企业的运营效率和降低成本&#xff0c;但在功能与实施效果方面&#xff0c;二者却有着显著的区别。本文将从这两个方面对数字工厂…

Pytorch实战01——CIAR10数据集

目录 1、model.py文件 &#xff08;预训练的模型&#xff09; 2、train.py文件&#xff08;会产生训练好的.th文件&#xff09; 3、predict.py文件&#xff08;预测文件&#xff09; 4、结果展示&#xff1a; 1、model.py文件 &#xff08;预训练的模型&#xff09; impor…

day57 动态规划part17● 647. 回文子串 ● 516.最长回文子序列● 动态规划总结篇

如果大家做了很多这种子序列相关的题目&#xff0c;在定义dp数组的时候 很自然就会想题目求什么&#xff0c;我们就如何定义dp数组。 布尔类型的dp[i][j]&#xff1a;表示区间范围[i,j] &#xff08;注意是左闭右闭&#xff09;的子串是否是回文子串&#xff0c;如果是dp[i][j…

C++学习路线

C学习路线思维导图&#xff0c;肝了一个星期终于搞定&#xff0c;这么硬核求个赞不过分吧&#xff1f; 思维导图的内容&#xff0c;也是本文的内容框架&#xff0c;坐稳扶好&#xff0c; C 高速快车要发车了&#xff01; 内容我会持续更新&#xff0c;点赞收藏&#xff0c;…