智慧农业新篇章:DSSAT模型、APSIM模型、WOFOST与PCSE模型综合应用,引领作物生长模拟与产量预测新潮流

news2025/1/17 3:41:41

目录

★WOFOST模型与PCSE模型应用

★基于R语言APSIM模型进阶应用与参数优化、批量模拟

★最新DSSAT作物模型建模方法及应用

★基于Python语言快速批量运行DSSAT模型及交叉融合、扩展应用

★R语言与作物模型(以DSSAT模型为例)融合应用

★遥感数据与作物生长模型同化及在作物长势监测与估产中的应用

更多应用


作物模型,全称为作物生长模拟模型,是作物学科和计算机学科的交叉融合,它利用作物科学和农业系统学,结合作物生理生态特征、田间气象条件、土壤理化条件、水肥条件及其他农业措施,对不同种类农作物进行定量、动态模拟作物生长发育、产量形成、对外界环境不同变化的响应过程。作物模型能够量化作物生长系统、不同生理生长过程及相互关系,减少田间试验工作量,避免在不同试验区重复进行相同或类似的科学试验。

近年来,作物模型技术得到了不断的发展,多种模型如DSSAT、APSIM、WOFOST与PCSE等被广泛应用于农业生产实践和科学研究中。这些模型的综合应用,可以更加全面和深入地了解作物生长发育的规律和机制,为农业生产提供更加科学、精准的指导。

★WOFOST模型与PCSE模型应用

WOFOST(WorldFoodStudies)和PCSE(PythonCropSimulationEnvironment)是两个用于农业生产模拟的模型:WOFOST是一个经过多年开发和验证的模型,被广泛用于全球的农业生产模拟和农业政策分析;采用了模块化的结构,可以对不同的农作物和环境条件进行参数化和适应;WOFOST可用于长期模拟,能够模拟整个作物生长周期,包括播种、生长、收获等各个阶段;WOFOST积累了大量的实验数据,可用于验证模型的准确性,使其成为决策支持和政策分析的有力工具。PCSE是用Python编写的,这使得它易于学习和使用,尤其是对于具有Python编程经验的用户。PCSE是开源的,用户可以自由访问和修改其代码,以满足特定需求;PCSE可以与其他Python库和工具集成,使其更容易与数据科学工作流程和其他农业相关工具进行集成。选择使用哪个模型取决于具体的应用场景、用户的技能水平以及可用数据和计算资源。

本教程将围绕两个模型运行展开,包括:数据准备,模型参数解读与设置,模型运行与结果输出,模型结果解读与决策支持等内容。将学会如何使用WOFOST和PCSE这两个农业生产模型进行作物生长模拟,了解不同农作物的生长过程、对环境的响应以及如何进行模拟预测;使你深入了解作物的生长、发育和生态需求,包括光合作用、水分需求、营养吸收等;以帮助你在农业决策中更准确地评估不同因素的影响,如何根据气象、土壤和作物特性做出更明智的决策,例如何时种植、如何灌溉和施肥等;在模型应用过程中,你将需要处理和整理农田相关的数据,这有助于提高你的数据处理和分析能力;同时,你还会学习如何运用模型进行科学研究,如何设置实验和模拟,以及如何解释和分析模型结果。我们将为你提供一系列与农业生产模拟和科学研究相关的技能,这些技能可以在农业、科研和决策支持等领域中发挥作用。

第一章 理论基础 农作物生长模型概述
第二章 数据准备:气象数据、土壤数据、农田管理信息、作物参数、处理和准备数据的方法
第三章 WOFOST模型基础
第四章 PythonCropSimulationEnvironment

详情点击链接查看

WOFOST模型与PCSE模型应用-CSDN博客文章浏览阅读243次,点赞2次,收藏2次。使用WOFOST和PCSE这两个农业生产模型进行作物生长模拟,了解不同农作物的生长过程、对环境的响应以及如何进行模拟预测;使你深入了解作物的生长、发育和生态需求,包括光合作用、水分需求、营养吸收等;以帮助你在农业决策中更准确地评估不同因素的影响,如何根据气象、土壤和作物特性做出更明智的决策,例如何时种植、如何灌溉和施肥等https://blog.csdn.net/WangYan2022/article/details/132520904?spm=1001.2014.3001.5502


★基于R语言APSIM模型进阶应用与参数优化、批量模拟

APSIM模型内核算法是基于Fortran语言开发的,软件界面是基于C#进行开发,组件式驱动,各个模块可以自由组合。了解和熟悉APSIM模型的关键算法和软件的操作是学习APSIM模型的基础。此外,想要成为一名优秀的作物模型使用者与科研团队不可或缺的人才,除了掌握对作物模型相关知识之外,还要掌握模型的快速模拟和高效数据分析能力。R语言是一门应用场景广泛、简单易学的程序语言,APSIM模型开发了许多R语言辅助包,在APSIM模型的气候、土壤、管理措施等数据准备,自动化模拟,参数优化和结果分析上都发挥着重要的作用。

辅助提高作物模型工作者的APSIM模型使用技术,系统学习如何利用R语言来快速使用APSIM模型。精选大量作物模型应用案例,全程干货,让学员全面熟悉APSIM这一综合型农业生态系统模型,提高学员模型应用能力、数据分析和图表制作技能。如果你是资深模型爱好者,可以进一步熟悉各个模块的相关算法;如果你是该模型入门者,将让你体验一键模拟的乐趣。

专题一 APSIM模型应用与R语言数据清洗
专题二 APSIM气象文件准备与R语言融合应用
专题三 APSIM模型的物候发育和光合生产模块
专题四 APSIM物质分配与产量模拟
专题五 APSIM土壤水平衡模块
专题六 APSIM土壤碳、氮平衡模块
专题七 APSIM土壤碳、氮平衡模块
专题八 APSIM农田管理模块与情景模拟
专题九 APSIM模型Next Generation(NG)版本
专题十 APSIM模型参数优化和结果分析与模型评价
专题十一 APSIM模型源代码解析

详情点击链接查看

APSIM模型参数优化 批量模拟丨气象数据准备、物候发育和光合生产、物质分配与产量模拟、土壤水分平衡算法、土壤碳氮平衡模块、农田管理模块等_apsim调参-CSDN博客文章浏览阅读1.2k次。辅助提高作物模型工作者的APSIM模型使用技术,系统学习如何利用R语言来快速使用APSIM模型。精选大量作物模型应用案例,全程干货,让学员全面熟悉APSIM这一综合型农业生态系统模型,提高学员模型应用能力、数据分析和图表制作技能。_apsim调参https://blog.csdn.net/WangYan2022/article/details/132313710?spm=1001.2014.3001.5502


★最新DSSAT作物模型建模方法及应用

DSSAT模型内核算法是基于Fortran语言开发的,软件界面是基于C++进行开发。了解和熟悉DSSAT模型的关键算法和软件的操作是学习DSSAT模型的基础。此外,想要成为一名优秀的作物模型使用者与科研团队不可或缺的人才,除了掌握对作物模型相关知识之外,还要掌握模型的快速模拟和高效数据分析能力。Python是一门应用场景广泛、简单易学的程序语言,在DSSAT模型的气候、土壤、管理措施等数据准备,自动化模拟和结果分析上都发挥着重要的作用。

实践部分从DSSAT模型算法和模型软件两个方面熟悉掌握DSSAT模型的使用,进阶部分学习如何利用Python程序语言来快速使用DSSAT模型,让大家不需要使用界面操作就可以快速批量运行DSSAT模型,方便各个领域可以更好地交叉融合、扩展应用。

精选大量作物模型应用案例,全程干货,全面熟悉DSSAT这一综合型农业生态系统模型,提高学员模型应用能力、数据分析和图表制作技能。如果你是资深模型爱好者,可以进一步熟悉各个模块的相关算法;如果你是个模型入门者,将让你体验一键模拟的乐趣。

专题一 DSSAT模型与高级应用
1.作物生长模型的概念
2.作物生长模型的发展现状
3.DSSAT模型的开发历程
4.DSSAT模型的模块及模拟流程
5.作物生长模型的前沿应用
作物生长模型的算法改进
作物生长模型站点尺度和栅格尺度的模拟
作物生长模型与机器学习的集成
作物生长模型与遥感、表型数据的同化
专题二 DSSAT模型安装与编译
1.DSSAT模型操作
①DSSAT的安装
②DSSAT模型操作界面讲解
2.DSSAT模型源码操作与编译
①DSSAT模型源码安装
②DSSAT源码的介绍与修改
③DSSAT源码的编译
专题三 DSSAT气象文件准备DSSAT自带的气象数据的准备
①DSSAT气象文件的介绍
②日照转辐射算法
③DSSAT气象文件转化
专题四 DSSAT模型的物候发育模块DSSAT生育期算法
①DSSAT模型的生育期尺度
②DSSAT模型的积温计算
③DSSAT模型的生育期算法
④DSSAT模型的生育期影响因子及算法
专题五 DSSAT土壤文件准备
1.DSSAT模型的土壤输入参数
2.DSSAT模型土壤参数在数据缺失情况下的近似估算
3.DSSAT模型土壤输入文件准备
专题六 DSSAT土壤水-碳-氮模块
1.DSSAT模型的土壤模块
2.DSSAT模型土壤水分模块的主要算法
3.DSSAT模型土壤养分动态过程模拟及N2O排放的模拟
①氮素的矿化和固定过程
②氮素的硝化作用与反硝化作用
③土壤N2O的模拟
④土壤磷动态与模拟
4.DSSAT模型土壤碳库模型及土壤有机碳SOC的模拟
①土壤碳库模型的发展历程
②土壤碳的周转模型
③土壤CO2排放和土壤有机碳的模拟
专题七 DSSAT管理文件准备
1.DSSAT模型的农田管理措施的准备
①DSSAT模型播期和播种密度设置
②DSSAT模型施肥设置(化肥+有机肥)
③DSSAT模型的灌溉设置
④DSSAT模型秸秆还田设置
2.DSSAT模型的作物生长模拟
①光温潜在产量的模拟
②不同管理措施下作物生长的模拟
专题八 DSSAT作物生长模拟算法
1.DSSAT模型光合生产和物质分配算法
2.DSSAT模型产量形成算法
3.DSSAT模型养分吸收、分配和养分效应算法
4.DSSAT水分效应算法
专题九 DSSAT作物参数设置和优化
1.DSSAT模型的主要遗传参数,包括物种参数、生态型参数、品种参数
2.DSSAT软件自带的参数优化方法
3.DSSAT软件自带的参数敏感性分析方法
专题十 DSSAT模型结果分析与模型评价
1.对DSSAT模拟的模拟结果进行分析
2.对模拟结果的进行模型评价
3.对模型的结果进行做图
专题十一 更多案例模拟与疑难解答
1.不同作物、不同情景的模拟
2.实例回顾、训练、巩固
注:请提前自备电脑及安装所需软件


★基于Python语言快速批量运行DSSAT模型及交叉融合、扩展应用

专题一 Python语言与数据科学
1.Python语言与数据科学
1)python语言发展脉络
2)Python语言在作物模型中的应用
2.Python软件安装及入门
1)Anaconda软件安装
2)Python库的安装与基本语法
3)Python的字符操作与正则表达式
4)Python的数据清洗与存储
5)各种数据格式的读写及操作
专题二 Python准备DSSAT气象文件
1.Python操作和准备气象文件
1)DSSAT气象文件的编写分析
2)使用Python编写DSSAT气象文件
3)日照转辐射算法的编写
4)DSSAT气象文件的批量转化
专题三 Python准备DSSAT土壤文件
1.DSSAT模型的土壤模块及土壤输入参数
2.使用Python近似估算土壤输入参数
3.使用Pyhon语言操作和准备土壤输入文件
4.使用Python快速批量生产土壤文件
5.使用Python调用全球土壤数据库的数据并转化成DSSAT土壤文件
专题四 Python准备DSSAT管理文件
1.使用Python对农田管理措施(播期、密度、施肥、灌溉、有机肥、秸秆还田等)进行设置
2.使用Python进行管理文件批量准备(只需要填写excel,就能批量模拟)
专题五 Python准备DSSAT参数文件及批量模拟文件
1.DSSAT模型的主要遗传参数,包括物种参数、生态型参数、品种参数
2.主要的参数优化方法
3.使用Python语言进行参数文件准备
4.使用Python语言对批量模拟文件的编写
专题六 Python对模拟结果进行数据清洗、整理
1.使用Python读取DSSAT文件的模拟结果
2.对模拟结果进行数据清洗、分类和整理
专题七 Python对模拟结果进行数据分析及绘图
1.使用Python对模拟结果进行分析
2.使用Python计算模拟结果的MSE、RMSE、MAE、d-value、EF值
3.使用Python对模拟结果进行可视化(模拟结果的动态图和1:1图等)
注:请提前自备电脑及安装所需软件


★R语言与作物模型(以DSSAT模型为例)融合应用

专题一 DSSAT模型的高级应用
1.作物模型的概念
2.DSSAT模型发展现状
3.DSSAT与R语言的安装与介绍
4.DSSAT模型的高级应用案例
5.R语言在作物模型参数优化中的应用
6.R语言在作物模型全球栅格模拟中的应用
7.R语言在作物模型结果分析和数据可视化中的应用
专题二 R语言与数据科学
1.R语言与数据科学
1)R语言发展脉络
2)R语言数据操作技巧
3)R语言在作物模型中的应用
2.R语言编程技巧数据操作
1)R与工作目录
2)R的数据类型及结构
3)R中各数据类型的赋值与操作
4)各种数据格式的读写及操作
专题三 DSSAT模型高级应用技巧
1.DSSAT模型操作
1)DSSAT的安装
2)DSSAT模型操作界面讲解
2.DSSAT模型源码操作与编译
1)DSSAT模型源码安装
2)DSSAT源码的介绍与修改
3)DSSAT源码的编译
专题四 R语言准备DSSAT气象文件
1.DSSAT自带的气象数据的准备
2.R语言操作和准备气象文件
1)DSSAT气象文件的介绍
2)日照转辐射算法的编写
3)DSSAT气象文件的编写
专题五 R语言准备DSSAT土壤文件
1.DSSAT模型的土壤模块及土壤输入参数
2.DSSAT模型土壤水分-氮素-有机碳模块的主要算法
3.DSSAT模型土壤参数在数据缺失情况下的近似估算
4.使用R语言操作和准备土壤输入文件
5.DSSAT模型全球土壤数据库的使用
专题六 R语言准备DSSAT管理文件
1.DSSAT模型的农田管理措施(播期、密度、施肥、灌溉、有机肥、秸秆还田等)的介绍
2.使用R语言进行管理文件批量准备(只需要填写excel,就能批量模拟)
专题七 R语言准备DSSAT参数文件及批量模拟文件
1.DSSAT模型的主要遗传参数,包括物种参数、生态型参数、品种参数
2.主要的参数优化方法
3.使用R语言进行参数文件准备
4.使用R语言对批量模拟文件的编写
专题八 R语言对模拟结果进行数据清洗和整理
1.使用R语言读取DSSAT文件的模拟结果
2.对模拟结果进行数据清洗、分类和整理
专题九 R语言对模拟结果进行数据分析及绘图
1.使用R语言对模拟结果进行分析
2.使用R语言计算模拟结果的MSE、RMSE、MAE、d-value、EF值
3.使用R语言对模拟结果进行可视化(模拟结果的动态图和1:1图等)
附加
学员根据科研或生产实际,提供数据,集体讨论DSSAT的高级应用方案
提供若干附加材料,包括典型论文、其它软件以及学习材料
实例回顾、训练、巩固
注:请提前自备电脑及安装所需软件


★遥感数据与作物生长模型同化及在作物长势监测与估产中的应用

基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具,可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系,为不同条件下作物生长发育及产量预测、栽培管理、环境评价以及未来气候变化评估等提供了定量化工具。但是,当作物生长模型从单点研究发展到区域尺度应用时,由于空间尺度增大而出现的地表、近地表环境非均匀性问题,导致模型中一些宏观资料的获取和参数的区域化方面存在很多困难,模型模拟结果也会存在很大的不确定性,而遥感信息在很大程度上可以帮助作物生长模型克服这些不足。

目前在基于数据同化方法耦合遥感与作物模型开展作物估产方面,尚未有成熟的商业软件面世,本教程旨在帮助学员掌握遥感与作物模型同化的基础知识,与传统的作物遥感监测方法的区别与联系,采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出地分析数据同化方法在作物长势监测及产量估算应用时需要掌握的经验及编程技巧,以便解决农业生产科研中的相关科学问题。

本次教程主要涉及遥感数据与作物模型同化建模中的遥感数据、PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等主要环节。

专题一 遥感基础理论知识
专题二 作物长势监测与产量估算国内外研究进展
专题三 Fortran编程语言
专题四 作物参数遥感反演基本原理
专题五 PROSAIL模型
专题六 参数敏感性分析
专题七 遥感反演过程中的代价函数求解问题
专题八 基于查找表方法+PROSAIL模型的作物参数遥感反演
专题九 基于优化算法+PROSAIL模型的作物参数遥感反演
专题十 作物模型程序化表达与运行
专题十一 作物模型与遥感数据同化建模原理
专题十二 作物模型与遥感反演值同化建模的程序化实现(第一种方式)
专题十三 作物模型与遥感反射率同化建模的程序化实现(第二种方式)

详情点击链接查看作物模型与遥感反演值同化建模的程序化实现_小麦 生长模型 算法 java-CSDN博客文章浏览阅读186次。掌握遥感与作物模型同化的基础知识,与传统的作物遥感监测方法的区别与联系,采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出地分析数据同化方法在作物长势监测及产量估算应用时需要掌握的经验及编程技巧,以便解决农业生产科研中的相关科学问题。_小麦 生长模型 算法 javahttps://blog.csdn.net/WangYan2022/article/details/132826929?spm=1001.2014.3001.5502


更多应用

包含:InVEST模型、PLUS模型、DNDC模型、APSIM模型、DSSAT模型、MAXENT模型、CENTURY模型、CASA模型、BGC模型、CLM模式、CESM模式、CLUE模型、FLUS模型、PROSAIL模型、Meta分析、BIOMOD2模型、物种气候生态位、物候提取、Python地球科学、Noah-MP陆面过程模型、CLUE模型、Fragstats景观格局分析、GEE遥感云大数据、Matlab/Python高光谱遥感、DICE模型、LEAP模型、双碳、ArcGIS、ArcGIS Pro等...

★关 注【科研充电吧】公 众 号,获取海量教程和资源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1513369.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

酷开科技以消费者需求为导向冲刺OTT行业的星辰大海

通过大屏营销、互动营销等方式,提升品牌认知度和市场竞争力。酷开科技始终坚持以消费者的需求为导向,致力于为品牌方和消费者搭建高效、准确的沟通桥梁,开创OTT大屏营销新纪元。 伴随技术发展,智能电视已经从“尝鲜”变成了主流产…

C# Web自动化--Selenium入门

安装依赖库 需要引用的核心库是Selenium.RC,Selenium.Support,Selenium.WebDriver 然后再需要引用 浏览器驱动库,这里我以IE浏览器为例,Chrome使用方式跟IE是一样的,程序包名称为Selenium.WebDriver.ChromeDriver。 …

静电ESD整改:原因、影响与解决方案详解?|深圳比创达电子

静电(ESD)是在日常生活和工作中常见的现象,但它可能对电子设备和器件造成严重的损坏。本文将介绍静电ESD的定义、原因、影响以及解决方案,帮助大家更好地了解ESD问题,并采取相应的整改措施。 一、静电ESD的定义 静电…

技术驱动校园招聘:Java+SpringBoot+Vue的实践之旅

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

【Linux操作系统】:Linux进程概念(2)

一、Z(zombie)-僵尸进程 1.僵尸进程概念 故事 张三每天都有跑步的习惯,这一天他和往常一样跑步,跑了两三圈,突然跑在它前面的一个人倒在地上不动了,作为热心市民张三赶紧报警并且拨打120。很快120就来了,但是没过几分…

Docker单机下的容器网络管理

Docker容器网络管理 容器网络类型 Docker安装以后,会在我们的主机上创建三个网络 docker network ls可以看到有bridge、host和none三种网络类型 我们先把ubuntu的网络环境配置一下 docker run -it ubuntu apt update apt install net-tools iputils-ping curl这…

移速u盘怎么恢复彻底删除的文件,移速u盘彻底删除的文件如何恢复

移速u盘怎么恢复彻底删除的文件?在日常使用中,我们经常会遇到需要删除U盘中的文件的情况。然而,有时候我们可能会不小心将重要的文件彻底删除,导致数据的丢失。对于移速U盘用户来说,如何恢复彻底删除的文件成为了一个备…

江科大stm32学习笔记——【6-1】TIM定时中断

一.定时器 1.类型 STM32F103C8T6定时器资源:TIM1,TIM2,TIM3,TIM4 我们这次用通用定时器 2.基本定时器 预分频器对来自RCC_TIMxCLK的72MHz进行预分频,比如写0就是不分频或1分频,输出频率输入频率72MHz。写1就是2分频,输出频率输…

Java复习01 集合概念

Java复习01 集合 在Java中,集合(Collections)是一种用来存储一组对象的结构。想象一下有一个装东西的箱子,这个箱子可以装很多不同类型的东西,例如书、DVD或者玩具。Java的集合也是这样,但是它专门用来装载…

如何利用工业以太网关实现上位机无线远程控制多台plc通讯?

组态软件与西门子S7系列PLC及三菱PLC间的无线通信测试需要用到以下设备: l 西门子PLC型号:S7-200Smart 2台 l 三菱PLC型号:FX5U 2台 l 上位机:力控V7.1 1台 l 无线通讯终端(网口版)——DTD418MB 3块…

群控软件代理,群控服务器配置要求

目录 前言 硬件要求 操作系统要求 代理软件要求 网络要求 1. 在群控服务器上安装Shadowsocks软件 2. 配置本地代理软件 3. 配置浏览器代理 前言 群控软件代理是指在进行群控活动时,利用代理服务器来隐藏真实的IP地址,以保护个人隐私或绕过一些网…

概率与常见的概率分布

概率是数据分析、机器学习中最基础的知识。也是在生活中最实用的一门学科,学了很多大道理不一定能过好一生,学好概率则有一定概率会变得更好。为大概率坚持,为小概率备份。 概率与分布 要想了解概率,首先得搞清楚概率和概率分布的…

「飞桨星河社区创作者激励计划」全新上线!丰富权益,等你领取~

为了助力更多的创作者实现在飞桨星河社区的成长,同时鼓励创作者们积极投入,记录创作者们的高光时刻,重磅推出**「创作者成长体系」,同时推出「每周精选&月度榜单」**活动,期待你一同加入精彩纷呈的AI学习与创作之旅…

学成在线_课程预览-视频播放测试_视频加载出错

问题 在进行课程预览界面的视频播放测试时界面提示视频加载出错。 如图所示JAVA特性讲解的第一小节视频加载出错。 查看课程计划会发现该小节已经进行了视频关联。 问题原因 此课程小节的关联视频在我们自己的minIO的桶中并不存在。所以前端从数据库中拿到的关联视频url是…

AI情报专刊来啦!《“AI换脸”威胁研究与安全策略》

目录 “AI换脸”常见的诈骗套路 1、伪造账号造谣传谣 2、冒充熟人进行诈骗 3、伪造身份申请银行贷款 4、“网络钓鱼”更加难以识别 5、冒充他人远程面试入职 6、冒名登录盗走银行余额 “AI换脸”的产业链 “AI换脸”使用到的技术 人脸识别和关键点检测 图像/视频合成技术 生成对…

【兔子机器人】修改GO、车轮电机ID(软件方法、硬件方法)以及修正VMC腿部初始化夹角

一、GO电机修改ID 1、硬件方法 利用上位机直接修改GO电机的id号: 打开调试助手,点击“调试”,查询电机,修改id号,即可。 但先将四个GO电机连接线拔掉,不然会将连接的电机一并修改。 利用24V电源给GO电机…

Redis命名设计

可读性和管理性 以项目名为前缀(防止key冲突),用冒号分隔,比如项目名:表名:id zh(知乎):news_data(新闻数据):2(主键id) zh:news_data:2 精简性 key的命名,尽量精简,key的名字长度对内存的占用不可忽视,我们来实际…

成都产业园排名出炉!金牛区这个园区成数字产业聚集地

近日,成都产业园排名榜单正式发布,可以看出金牛区成数字产业聚集地,其中,备受瞩目的国际数字影像产业园荣登榜首。这一排名不仅彰显了国际数字影像产业园在数字产业领域的卓越表现,更凸显了成都作为西部重要城市在科技…

Redis及其常用命令(二)

SortedSet类型 在此类型中,每个元素都有一个分数 key -> string value -> sorted([socre,member],[score,member]...) # 添加元素 zadd key score member # 遍历集合 zrange key start stop [withscores] #升序 zrevrange key start stop [withscores]#降序…

如何“使用Docker安装compose,在CentOS7”?

1、下载地址 Releases docker/compose GitHub 2、下载好,上传服务器 3、 4、拷贝到/usr/local/bin/docker-compose目录下 cp docker-compose-linux-x86_64 /usr/local/bin/docker-compose 5、变更权限 chmod x /usr/local/bin/docker-compose 6、启动 docker…