Huggingface中Transformer模型使用

news2024/11/26 20:35:48

一、Huggingface介绍

1、Huggingface定位

NLP自从Transformer模型出现后,处理方式有大统一的趋势,首先回答几个基础问题:

1、自然语言处理究竟要做一件什么事呢?自然语言处理最终解决的是分类问题,但是它不仅仅输出一个分类的预测结果,关键的在于构建一个聪明的模型,不光能学习不同数据集的问题,还能处理不同类别的问题。

2、如何培养模型的学习能力?自然语言处理就像我们读书一样,要训练它的阅读能力、学习能力、理解能力,给出的是一系列阅读材料,然后想办法让它理解语言,不仅仅是一个分类的专项技能,这里就涉及到注意力机制了,通过设置学习任务每一段只关注其中部分语料,并分配好权重,通过训练得到比较好的效果。之后基于注意力模型搭建复杂的神经网络,以获取强大的学习能力。

3、NLP中的核心门派:BERT系(五岳剑派),GPT系(魔教),BERT有点像做完形填空,GPT有点像写小作文。现在NLP已到了大模型时代,已经在拼海量的数据量和参数,目前GPT系列已经取得很大成功,但是是大模型,个人要训练很是很麻烦的,也有些开源的大模型,先从调优做起!

4、如何开始NLP呢?引出这个问题,也是Huggingface的关键理念了,历史上有很多NLP的算法,但是实事已经证明大部分没啥用,有用的就是Transformer这一系列的模型了,而Huggingface就是集大成者于一身,包括了当下NLP所有核心模型,只需要一行代码就可以调用BERT模型,GPT模型及其训练好的权重参数!其次,Huggingface它不仅是一个工具包,更是一个社区,也是NLP大佬们的舞台。当然kaggle也是个不错的平台,结合着用!

2、Huggingface调用示例

Huggingface这个包基本调用即可,先安装包pip install:

pip install transformers

开箱即用,方便:

import warnings
warnings.filterwarnings("ignore")
from transformers import pipeline#用人家设计好的流程完成一些简单的任务
classifier = pipeline("sentiment-analysis")
classifier(
    [
        "I've been waiting for a HuggingFace course my whole life.",
        "I hate this so much!",
    ]
)

结果:

[{'label': 'POSITIVE', 'score': 0.9598049521446228},
 {'label': 'NEGATIVE', 'score': 0.9994558691978455}]

测试很方便,如果有包不好下载,找镜像、先download安装包之后再安装。

二、Transformer模型

1、注意力机制(Attention model)

Transformer可以说大名鼎鼎了,NLP领域大哥大级别,一统天下好多年了,而且是CV界新秀,开场即巅峰。它的基础在于注意力机制,先来吴恩达老师对Transformer细节的架构图:

可以看出Transformer有Encoder、Decoder两部分组成,采用Multi-Head Attention(多头注意力)提取文本特征,形成编码器,最终也通过两层Multi-Head Attention进行解码,Transformer核心就是Attention Model

什么是注意力?注意力是稀缺的,而环境中信息量非常之大,比如人类的视觉神经每秒收到10^{8}位的信息,圆圆超过大脑的处理能力,但人类从远古祖先中继承了一项本能经验“并非感官的所有输入都是一样的”,大脑会将关注点集中在一小部分信息中,这便是注意力。认知觉醒中提到一种凭感觉学习的方法,核心思路便是先用感性能力帮助自己选择,再用理性能力帮助自己思考。这个过程中凭感觉学习中的感觉就类似于注意力,注意力模型就是通过训练找到潜意识里的感觉,分别出重要的信息!

回到注意力模型,源于机器翻译,并快速推广到了其他应用领域,有三个重要概念:查询(query)、键(key)和值(value),用Q、K、V分别代替。查询相当于自主性提示,触发感觉得信息,比如突然看到学校的照片,回想起求学经历,query相当于这张照片,键和值的理解要花点时间,键相当于概述求学经历,值相当于求学经历的细节,在哪个教室听哪位老师讲课等等。

回到NLP中,用这幅图好理解Attention在做什么(图里是自注意力模型,query就是语料自身,Attention is All you need!):

对于注意力的公式推导,参考视频讲的不错:注意力机制的本质|Self-Attention|Transformer|QKV矩阵_哔哩哔哩_bilibili

Q、K的作用在于确定V的权重,因为只有K的话不能计算出来所有V所需要的权重,假设用 a(q,k)来表示q与k对应的注意力权重,则预测值f(q):    f(q)=\sum_{1}^{3} a(q,k_{i})v_{i}

a是任意能刻画相关性的函数,但需要归一化,我们以高斯核(注意力分数)为例(包括softmax函数);公式变形为:a(q,k_{i})v_{i}=softmax(-\frac{1}{2}(q-k_{i})^{2})v_{i},矩阵的变形不再赘述,公式如下图所示。特别的,当Q、K、V为同一矩阵时,即为自注意力模型。

2、Transformer

三、调用流程概述

首先原始文本用Tokenizer进行分词处理得到输入的文本,然后通过模型进行学习,学习之后进行处理、预测分析。而且huggingface有个好处,分词器、数据集、模型都封装好了!很方便。

1、Tokenizer

Tokenizer会做3件事:

  • 分词,分字以及特殊字符(起始,终止,间隔,分类等特殊字符可以自己设计的)
  • 对每一个token映射得到一个ID(每个词都会对应一个唯一的ID)
  • 还有一些辅助信息也可以得到,比如当前词属于哪个句子(还有一些MASK,表示是否是原来的词还是特殊字符等)

其中AutoTokenizer可以自动根据模型来判断采用哪个分词器:

from transformers import AutoTokenizer#自动判断

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"#根据这个模型所对应的来加载
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

输入文本:

raw_inputs = [
    "I've been waiting for a this course my whole life.",
    "I hate this so much!",
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
print(inputs)

打印结果(得到两个字典映射,'input_ids',一个tensor集合,每个词所对应的ID集合;attention_mask,一个tensor集合,表示是否是原来的词还是特殊字符等):

{'input_ids': tensor([[ 101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 2023, 2607, 2026, 2878,
         2166, 1012,  102],
        [ 101, 1045, 5223, 2023, 2061, 2172,  999,  102,    0,    0,    0,    0,
            0,    0,    0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]])}

如果想根据id重新获得原始句子,如下操作:

tokenizer.decode([ 101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 2023, 2607, 2026, 2878,2166, 1012,  102])

生成的文本会存在特殊字符,这些特殊字符是因为人家模型训练的时候就加入了这个东西,所以这里默认也加入了(google系的处理)

"[CLS] i've been waiting for a this course my whole life. [SEP]"

2、模型的加载

模型的加载直接指定好名字即可(先不加输出层)

from transformers import AutoModel

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModel.from_pretrained(checkpoint)
model

打印出来模型架构,就是DistilBertModel的架构了,能看到embeddings层、transformer层,看得还比较清晰:

DistilBertModel(
  (embeddings): Embeddings(
    (word_embeddings): Embedding(30522, 768, padding_idx=0)
    (position_embeddings): Embedding(512, 768)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
  (transformer): Transformer(
    (layer): ModuleList(
      (0): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        )
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
        )
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      )
      (1): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        )
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
        )
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      )
      (2): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        )
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
        )
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      )
      (3): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        )
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
        )
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      )
      (4): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        )
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
        )
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      )
      (5): TransformerBlock(
        (attention): MultiHeadSelfAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (q_lin): Linear(in_features=768, out_features=768, bias=True)
          (k_lin): Linear(in_features=768, out_features=768, bias=True)
          (v_lin): Linear(in_features=768, out_features=768, bias=True)
          (out_lin): Linear(in_features=768, out_features=768, bias=True)
        )
        (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (ffn): FFN(
          (dropout): Dropout(p=0.1, inplace=False)
          (lin1): Linear(in_features=768, out_features=3072, bias=True)
          (lin2): Linear(in_features=3072, out_features=768, bias=True)
        )
        (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      )
    )
  )
)

看下输出层的结构,这里**表示分配字典,按照参数顺序依次赋值:

outputs = model(**inputs)
print(outputs.last_hidden_state.shape)
torch.Size([2, 15, 768])

3、模型基本逻辑

根据上面代码总结模型的逻辑:input——>词嵌入——>Transformer——>隐藏层——>Head层。

4、加入输出头

from transformers import AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
outputs = model(**inputs)
print(outputs.logits.shape)

这里就得到分类后的结果:

torch.Size([2, 2])

再来看看模型的结构:

model
DistilBertForSequenceClassification(
  (distilbert): DistilBertModel(
    (embeddings): Embeddings(
      (word_embeddings): Embedding(30522, 768, padding_idx=0)
      (position_embeddings): Embedding(512, 768)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (transformer): Transformer(
      (layer): ModuleList(
        (0): TransformerBlock(
          (attention): MultiHeadSelfAttention(
            (dropout): Dropout(p=0.1, inplace=False)
            (q_lin): Linear(in_features=768, out_features=768, bias=True)
            (k_lin): Linear(in_features=768, out_features=768, bias=True)
            (v_lin): Linear(in_features=768, out_features=768, bias=True)
            (out_lin): Linear(in_features=768, out_features=768, bias=True)
          )
          (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (ffn): FFN(
            (dropout): Dropout(p=0.1, inplace=False)
            (lin1): Linear(in_features=768, out_features=3072, bias=True)
            (lin2): Linear(in_features=3072, out_features=768, bias=True)
          )
          (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        )
        (1): TransformerBlock(
          (attention): MultiHeadSelfAttention(
            (dropout): Dropout(p=0.1, inplace=False)
            (q_lin): Linear(in_features=768, out_features=768, bias=True)
            (k_lin): Linear(in_features=768, out_features=768, bias=True)
            (v_lin): Linear(in_features=768, out_features=768, bias=True)
            (out_lin): Linear(in_features=768, out_features=768, bias=True)
          )
          (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (ffn): FFN(
            (dropout): Dropout(p=0.1, inplace=False)
            (lin1): Linear(in_features=768, out_features=3072, bias=True)
            (lin2): Linear(in_features=3072, out_features=768, bias=True)
          )
          (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        )
        (2): TransformerBlock(
          (attention): MultiHeadSelfAttention(
            (dropout): Dropout(p=0.1, inplace=False)
            (q_lin): Linear(in_features=768, out_features=768, bias=True)
            (k_lin): Linear(in_features=768, out_features=768, bias=True)
            (v_lin): Linear(in_features=768, out_features=768, bias=True)
            (out_lin): Linear(in_features=768, out_features=768, bias=True)
          )
          (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (ffn): FFN(
            (dropout): Dropout(p=0.1, inplace=False)
            (lin1): Linear(in_features=768, out_features=3072, bias=True)
            (lin2): Linear(in_features=3072, out_features=768, bias=True)
          )
          (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        )
        (3): TransformerBlock(
          (attention): MultiHeadSelfAttention(
            (dropout): Dropout(p=0.1, inplace=False)
            (q_lin): Linear(in_features=768, out_features=768, bias=True)
            (k_lin): Linear(in_features=768, out_features=768, bias=True)
            (v_lin): Linear(in_features=768, out_features=768, bias=True)
            (out_lin): Linear(in_features=768, out_features=768, bias=True)
          )
          (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (ffn): FFN(
            (dropout): Dropout(p=0.1, inplace=False)
            (lin1): Linear(in_features=768, out_features=3072, bias=True)
            (lin2): Linear(in_features=3072, out_features=768, bias=True)
          )
          (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        )
        (4): TransformerBlock(
          (attention): MultiHeadSelfAttention(
            (dropout): Dropout(p=0.1, inplace=False)
            (q_lin): Linear(in_features=768, out_features=768, bias=True)
            (k_lin): Linear(in_features=768, out_features=768, bias=True)
            (v_lin): Linear(in_features=768, out_features=768, bias=True)
            (out_lin): Linear(in_features=768, out_features=768, bias=True)
          )
          (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (ffn): FFN(
            (dropout): Dropout(p=0.1, inplace=False)
            (lin1): Linear(in_features=768, out_features=3072, bias=True)
            (lin2): Linear(in_features=3072, out_features=768, bias=True)
          )
          (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        )
        (5): TransformerBlock(
          (attention): MultiHeadSelfAttention(
            (dropout): Dropout(p=0.1, inplace=False)
            (q_lin): Linear(in_features=768, out_features=768, bias=True)
            (k_lin): Linear(in_features=768, out_features=768, bias=True)
            (v_lin): Linear(in_features=768, out_features=768, bias=True)
            (out_lin): Linear(in_features=768, out_features=768, bias=True)
          )
          (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (ffn): FFN(
            (dropout): Dropout(p=0.1, inplace=False)
            (lin1): Linear(in_features=768, out_features=3072, bias=True)
            (lin2): Linear(in_features=3072, out_features=768, bias=True)
          )
          (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        )
      )
    )
  )
  (pre_classifier): Linear(in_features=768, out_features=768, bias=True)
  (classifier): Linear(in_features=768, out_features=2, bias=True)
  (dropout): Dropout(p=0.2, inplace=False)
)

之后采用softmax进行预测:

import torch

predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
print(predictions)
tensor([[1.5446e-02, 9.8455e-01],
        [9.9946e-01, 5.4418e-04]], grad_fn=<SoftmaxBackward0>)

id2label这个我们后续可以自己设计,标签名字对应都可以自己指定:

model.config.id2label
{0: 'NEGATIVE', 1: 'POSITIVE'}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1511540.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于单片机的智能小车泊车系统设计

摘 要:随着信息技术的进步,汽车逐渐朝着安全、智能方向发展,智能泊车系统的出现不仅能帮助人们更加快速、安全地完成泊车操作,而且适用于狭小空间的泊车操作,降低驾驶员泊车负担,减轻泊车交通事故发生率。文章基于单片机设计自动泊车系统,以单片机为核心来实现信息收集及…

洛谷P6022快乐水

他来到了一家商店门前。 这家商店为了吸引顾客来买快乐水&#xff0c;搞了这么一个活动&#xff1a;「55 个瓶盖换一瓶快乐水」。于是&#xff0c;人们纷纷来他的店里买快乐水。 买完快乐水&#xff0c;他想到了一个问题&#xff1a; 如果一瓶快乐水有m 个附属品&#xff0c…

Java线程的6种状态

线程在生命周期中并不是固定处于某一个状态而是随着代码的执行在不同状态之间切换。 NEW&#xff1a;初始状态&#xff0c;线程被创建出来但没有被调用start()RUNNABLE&#xff1a;运行状态&#xff0c;线程被调用了start()等待运行的状态BLOCKED&#xff1a;阻塞状态&#xf…

uview upicker时间选择器(附Demo)

目录 前言正文 前言 uniapp时间选择器&#xff0c;是upicker&#xff0c;与微信小程序还是有些区别 补充官网的基本知识&#xff1a;uview官网 官网的展示例子如下&#xff1a;&#xff08;但是没Demo&#xff09; 正文 通过上面的展示图&#xff0c;复刻一个类似Demo图&am…

15双体系Java学习之数组的声明和创建

数组的声明 ★小贴士 可以使用int[] a;或者int a[];建议使用第一种风格&#xff0c;因为它将元素类型int[]&#xff08;整型数组&#xff09;与变量名清晰分开了。 在Java中声明数组时不能指定其长度。这种定义是非法的&#xff1a;int a[5]; 注意&#xff1a;上图显示的内存…

学习数据节构和算法的第15天

单链表的实现 链表的基本结构 #pragma once #include<stdio.h> typedf int SLTDataType; typedy struct SListNode {SLTDataType data;struct SListNode*next; }SLTNode;void Slisprint(SLTNode*phead);打印链表 #include<stdio.h> void SListPrint(SLTNode*phe…

【LeetCode】升级打怪之路 Day 18:二叉树题型 —— 树的深度、高度、路经

今日题目&#xff1a; 104. 二叉树的最大深度111. 二叉树的最小深度110. 平衡二叉树257. 二叉树的所有路径112. 路径总和 目录 Problem 1&#xff1a;树的深度LC 104. 二叉树的最大深度 【easy】LC 111. 二叉树的最小深度 【易错】 Problem 2&#xff1a;树的高度LC 110. 平衡二…

嵌入式系统软件及操作系统

0、前言 本专栏为个人备考软考嵌入式系统设计师的复习笔记&#xff0c;未经本人许可&#xff0c;请勿转载&#xff0c;如发现本笔记内容的错误还望各位不吝赐教&#xff08;笔记内容可能有误怕产生错误引导&#xff09;。 考查选择题为多&#xff1a;嵌入式系统软件特点是什么…

解决Klipper下位机ID获取失败问题

使用硬件&#xff1a; 上位机&#xff1a;必趣派&#xff0c;版本CB1_Debian11_Klipper_kernel5.16_20230303 下位机&#xff1a;八爪鱼STM32F407 问题&#xff1a;上位机获取下位机ID失败。 解决&#xff1a;调试过程中&#xff0c;发现上位机和下位机之间没有物理连接&…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Stepper)

步骤导航器组件&#xff0c;适用于引导用户按照步骤完成任务的导航场景。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 仅能包含子组件StepperItem。 接口 Stepper(value?: { index?…

2021年江苏省职业院校技能大赛高职组 “信息安全管理与评估”赛项任务书

2021年江苏省职业院校技能大赛高职组 “信息安全管理与评估”赛项任务书 一、赛项时间&#xff1a;二、赛项信息三、竞赛内容&#xff1a;第一阶段任务书&#xff08;300分&#xff09;任务1&#xff1a;网络平台搭建&#xff08;60分&#xff09;任务2&#xff1a;网络安全设备…

AI 技术:改变世界的力量

人工智能&#xff08;AI&#xff09;是当今科技领域最热门的话题之一&#xff0c;它已经成为推动社会进步和经济发展的重要力量。AI 技术的应用范围非常广泛&#xff0c;从智能手机、自动驾驶汽车到医疗保健、金融服务等领域&#xff0c;都可以看到 AI 的身影。 那么&#xff0…

GIS学习笔记(四):GIS数据可视化综合(矢量数据)

矢量数据 arcgis的主要可视化工具&#xff1a;属性 符号系统 符号系统 按类别 这里不会涉及到数字的大小因素&#xff0c;只是按照字符的分类去做可视化 “唯一值”的含义 “建筑年代”字段共有10个年份&#xff0c;一个年份也许有多个数据( eg.1990年的建筑有20个)&…

JavaWeb——013SpringBootWeb综合案例(事务管理、AOP)

事务&AOP 目录 事务&AOP1. 事务管理1.1 事务回顾1.2 Spring事务管理1.2.1 案例1.2.2 原因分析1.2.3 Transactional注解 1.3 事务进阶1.3.1 rollbackFor1.3.3 propagation1.3.3.1 介绍1.3.3.2 案例 2. AOP基础2.1 AOP概述2.2 AOP快速入门2.3 AOP核心概念 3. AOP进阶3.1 …

传统SessionID,Cookie方式与SringSecurity+JWT验证方式

在Spring Boot框架中&#xff0c;可以使用Spring Session来处理会话管理。Spring Session允许开发者在不同的存储后端&#xff08;如Redis、数据库等&#xff09;之间共享和管理会话状态。通过Spring Session&#xff0c;开发者可以轻松地实现会话管理、会话失效以及跨多个节点…

使用函数返回值的循环、使用带返回值的函数

本文参考C Primer Plus进行C语言学习 文章目录 使用函数返回值的循环使用带返回值的函数 一.使用函数返回值的循环 #include<stdio.h> double power(double n,int p); int main() {double x,xpow;int exp;printf("Enter a number and the posotive integer power&…

J1周-ResNet-50算法

本文为&#x1f517;365天深度学习训练营 中的学习记录博客 原作者&#xff1a;K同学啊|接辅导、项目定制 我的环境&#xff1a; 1.语言&#xff1a;python3.7 2.编译器&#xff1a;pycharm 3.深度学习框架Tensorflow/Pytorch 1.8.0cu111 一、问题引出 CNN能够提取低、中、…

Early if-conversion - 优化阅读笔记

Early if-conversion 用于对于没有很多可预测指令的乱序CPU。目标是消除可能误预测的条件分支。 来自分支两侧的指令都会被推测性地执行&#xff0c;并使用 cmov 指令选择结果。 // SSAIfConv 类在确定可能的情况下&#xff0c;对SSA形式的机器码执行if-conversion。该类不包…

为什么不要使用elasticsearch

互联网上有很多文章&#xff0c;都在讲为什么要使用elasticsearch&#xff0c;却很少有人讲为什么不要使用elasticsearch。作为深入研究elasticsearch四年&#xff0c;负责公司万亿级别检索的操盘手&#xff0c;借着这篇文章&#xff0c;给大家分享一下&#xff0c;为什么不要使…