环境和包:
环境
python:python-3.12.0-amd64包:
matplotlib 3.8.2
pandas 2.1.4
openpyxl 3.1.2
scipy 1.12.0
代码:
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
from matplotlib.colors import ListedColormap
import numpy as np
# 读取Excel文件
df = pd.read_excel('煤仓模拟参数41.xlsx')
#去除无效点
# 根据A列和B列分组,并将每组中C列的值更改为该组中C列的最小值
df['Z轴'] = df.groupby(['X轴', 'Y轴'])['Z轴'].transform('min')
#df = pd.read_excel('煤仓模拟参数.xlsx')
# 提取x、y、z数据
x = df['X轴'].values
y = df['Y轴'].values
z = df['Z轴'].values
#df.to_excel('煤仓模拟参数41.xlsx', index=False)
# 创建三维坐标轴对象
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 使用平滑曲面插值方法创建地形图(假设使用样条插值方法)
#smoothed_terrain = ax.scatter(x, y, z, cmap='viridis')
# 使用griddata函数进行插值,这里使用最近邻插值法,你也可以选择其他的插值方法
# 插值后的数据用于绘制平滑曲面地形图
grid_x, grid_y = np.mgrid[min(x):max(x):100j, min(y):max(y):100j]
grid_z = griddata((x, y), z, (grid_x, grid_y), method='cubic')
# 使用平滑曲面插值后的数据绘制地形图
# 绘制地形图(camp:coolwarm,viridis,plasma,inferno,magma,cividis,rainbow)
#cmap = ListedColormap(['blue', 'green', 'yellow', 'orange','Red'])
#ax.contourf(grid_x, grid_y, grid_z, levels=60, cmap=cmap)
ax.contourf(grid_x, grid_y, grid_z, levels=300, cmap='viridis')
ax.grid(True)
# 设置x轴的刻度间隔
ax.set_xticks(np.arange(-7500, 7500, 2500)) # 从-7500到7500,步长为2500
# 设置y轴的刻度间隔
ax.set_yticks(np.arange(-7500, 7500, 2500)) # 从-7500到7500,步长为2500
# 设置z轴的刻度间隔
ax.set_zticks(np.arange(10000, 31000, 2500)) # 从10000到31000,步长为2500
plt.show()
效果图:
资源下载(分享-->资源分享):
链接:https://pan.baidu.com/s/1UlP0lsma8OWchfV5kstEFQ
提取码:kdgr