【动态规划】代码随想录算法训练营第四十六天 |139.单词拆分,关于多重背包,你该了解这些! ,背包问题总结篇!(待补充)

news2024/11/27 11:03:48

139.单词拆分

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

说明:

拆分时可以重复使用字典中的单词。

你可以假设字典中没有重复的单词。

示例 1:

  • 输入: s = "leetcode", wordDict = ["leet", "code"]
  • 输出: true
  • 解释: 返回 true 因为 "leetcode" 可以被拆分成 "leet code"。

示例 2:

  • 输入: s = "applepenapple", wordDict = ["apple", "pen"]
  • 输出: true
  • 解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。
  • 注意你可以重复使用字典中的单词。

示例 3:

  • 输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
  • 输出: false

4、视频链接:

动态规划之完全背包,你的背包如何装满?| LeetCode:139.单词拆分_哔哩哔哩_bilibili

class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        HashSet<String> set = new HashSet<>(wordDict);
        boolean[] valid = new boolean[s.length() + 1];
        valid[0] = true;

        for (int i = 1; i <= s.length(); i++) {
            for (int j = 0; j < i && !valid[i]; j++) {
                if (set.contains(s.substring(j, i)) && valid[j]) {
                    valid[i] = true;
                }
            }
        }
        return valid[s.length()];
    }
}
// 另一种思路的背包算法
class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        boolean[] dp = new boolean[s.length() + 1];
        dp[0] = true;

        for (int i = 1; i <= s.length(); i++) {
            for (String word : wordDict) {
                int len = word.length();
                if (i >= len && dp[i - len] && word.equals(s.substring(i - len, i))) {
                    dp[i] = true;
                    break;
                }
            }
        }

        return dp[s.length()];
    }
}

多重背包理论基础

对于多重背包,我在力扣上还没发现对应的题目,所以这里就做一下简单介绍,大家大概了解一下。

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

例如:

背包最大重量为10。

物品为:

重量

价值

数量

物品0

1

15

2

物品1

3

20

3

物品2

4

30

2

问背包能背的物品最大价值是多少?

和如下情况有区别么?

重量

价值

数量

物品0

1

15

1

物品0

1

15

1

物品1

3

20

1

物品1

3

20

1

物品1

3

20

1

物品2

4

30

1

物品2

4

30

1

毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。

练习题目:卡码网第56题,多重背包(opens new window)

代码如下:

// 超时了
#include<iostream>
#include<vector>
using namespace std;
int main() {
    int bagWeight,n;
    cin >> bagWeight >> n;
    vector<int> weight(n, 0); 
    vector<int> value(n, 0);
    vector<int> nums(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    for (int i = 0; i < n; i++) cin >> nums[i];    
    
    for (int i = 0; i < n; i++) {
        while (nums[i] > 1) { // 物品数量不是一的,都展开
            weight.push_back(weight[i]);
            value.push_back(value[i]);
            nums[i]--;
        }
    }
 
    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品,注意此时的物品数量不是n
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}

大家去提交之后,发现这个解法超时了,为什么呢,哪里耗时呢?

耗时就在 这段代码:

for (int i = 0; i < n; i++) {
    while (nums[i] > 1) { // 物品数量不是一的,都展开
        weight.push_back(weight[i]);
        value.push_back(value[i]);
        nums[i]--;
    }
}

如果物品数量很多的话,C++中,这种操作十分费时,主要消耗在vector的动态底层扩容上。(其实这里也可以优化,先把 所有物品数量都计算好,一起申请vector的空间。

这里也有另一种实现方式,就是把每种商品遍历的个数放在01背包里面在遍历一遍。

代码如下:(详看注释)

#include<iostream>
#include<vector>
using namespace std;
int main() {
    int bagWeight,n;
    cin >> bagWeight >> n;
    vector<int> weight(n, 0);
    vector<int> value(n, 0);
    vector<int> nums(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    for (int i = 0; i < n; i++) cin >> nums[i];

    vector<int> dp(bagWeight + 1, 0);

    for(int i = 0; i < n; i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
    }

    cout << dp[bagWeight] << endl;
}

时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

从代码里可以看出是01背包里面在加一个for循环遍历一个每种商品的数量。 和01背包还是如出一辙的。

当然还有那种二进制优化的方法,其实就是把每种物品的数量,打包成一个个独立的包。

和以上在循环遍历上有所不同,因为是分拆为各个包最后可以组成一个完整背包,具体原理我就不做过多解释了,大家了解一下就行,面试的话基本不会考完这个深度了,感兴趣可以自己深入研究一波。

#总结

多重背包在面试中基本不会出现,力扣上也没有对应的题目,大家对多重背包的掌握程度知道它是一种01背包,并能在01背包的基础上写出对应代码就可以了。

至于背包九讲里面还有混合背包,二维费用背包,分组背包等等这些,大家感兴趣可以自己去学习学习,这里也不做介绍了,面试也不会考。

背包问题汇总

年前我们已经把背包问题都讲完了,那么现在我们要对背包问题进行总结一番。

背包问题是动态规划里的非常重要的一部分,所以我把背包问题单独总结一下,等动态规划专题更新完之后,我们还会在整体总结一波动态规划。

关于这几种常见的背包,其关系如下:

通过这个图,可以很清晰分清这几种常见背包之间的关系。

在讲解背包问题的时候,我们都是按照如下五部来逐步分析,相信大家也体会到,把这五部都搞透了,算是对动规来理解深入了。

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

其实这五部里哪一步都很关键,但确定递推公式和确定遍历顺序都具有规律性和代表性,所以下面我从这两点来对背包问题做一做总结

#背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集(opens new window)
  • 动态规划:1049.最后一块石头的重量 II(opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和(opens new window)
  • 动态规划:518. 零钱兑换 II(opens new window)
  • 动态规划:377.组合总和Ⅳ(opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零(opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换(opens new window)
  • 动态规划:279.完全平方数(opens new window)

#遍历顺序

#01背包

在动态规划:关于01背包问题,你该了解这些!(opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

和动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

#完全背包

说完01背包,再看看完全背包。

在动态规划:关于完全背包,你该了解这些!(opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

  • 求组合数:动态规划:518.零钱兑换II(opens new window)
  • 求排列数:动态规划:377. 组合总和 Ⅳ(opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

  • 求最小数:动态规划:322. 零钱兑换(opens new window)、动态规划:279.完全平方数(opens new window)

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

#总结

这篇背包问题总结篇是对背包问题的高度概括,讲最关键的两部:递推公式和遍历顺序,结合力扣上的题目全都抽象出来了

而且每一个点,我都给出了对应的力扣题目

最后如果你想了解多重背包,可以看这篇动态规划:关于多重背包,你该了解这些!(opens new window),力扣上还没有多重背包的题目,也不是面试考察的重点。

如果把我本篇总结出来的内容都掌握的话,可以说对背包问题理解的就很深刻了,用来对付面试中的背包问题绰绰有余!

背包问题总结:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1510915.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

work 3/12

#include <iostream>using namespace std;class Rect { private:int width;int height; public:void init(int w,int h){widthw;heighth;}int set_w(int w){cin >> w;return w;}int set_h(int h){cin >> h;return h;}void show(){cout << "面积…

通过Office Web Viewer站点在线展示Office文档内容

方法&#xff1a; https://view.officeapps.live.com/op/view.aspx?src经Url编码的文档线上Url地址 比如&#xff1a; //以下地址来自一份旧项目代码&#xff0c;可见用的就是该方案function OfficeFileViewOnline(url, file_type, file_name) {url "http://14.23.112.2…

Docker容器化技术(数据卷的管理)

数据卷 是一个可供容器使用的特殊目录&#xff0c;它将主机操作系统目录直接 映射进容器&#xff0c;类似于 Linux 中的 mount 行为 。 数据卷&#xff1a;可以提供很多有用的特性 数据卷可以在容器之间共事和重用&#xff0c;容器间传递数据将变得高效与方便&#xff1b;对数…

week06 day04 (数据库高级函数 procedure 、sql写函数)

一. ER模型 矩形&#xff1a; 代表实体椭圆&#xff1a;代表实体的属性菱形&#xff1a;relation 代表实体之间的关系 二. 存储过程&#xff08;procedure&#xff09; 1. 语法 语法: create procedure 存储过程名(参数,…) begin//代码 end// 注意&#xff1a; 因为在存储…

数据结构——堆的应用 堆排序详解

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是大耳朵土土垚~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#x…

[Prob] Definition 3.7.5 (Function of two r.v.s)

定义3.7.5&#xff08;两个随机变量的函数&#xff09;&#xff1a;给定一个样本空间 \( S \) 的实验&#xff0c;如果 \( X \) 和 \( Y \) 是映射 到X(s) 和 Y(s) 的随机变量&#xff0c;那么 g(X, Y) 就是映射 s 到 g(X(s), Y(s)) 的随机变量。 请注意&#xff0c;我…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:DatePicker)

日期选择器组件&#xff0c;用于根据指定日期范围创建日期滑动选择器。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 无 接口 DatePicker(options?: DatePickerOptions) 根据指定范…

SAP 批量删除工艺路线和主配方_简介

通常我们在创建工艺路线的时候或者在导入工艺路线的时候,会存在数据导入出错,或者你创建的工艺路线需要删除的情况,通常情况下我们第一个想到的就是使用CA02或者C202去删除工艺路线或者是主配方。但是这样会存在一个问题就是,首先我们知道工艺路线和主配方都是存在在组里面…

记一次项目所学(中间件等)-动态提醒功能(RocketMQ)

记一次项目所学(中间件等&#xff09;–动态提醒功能&#xff08;RocketMQ&#xff09; 订阅发布模式与观察者模式 RocketMQ&#xff1a;纯java编写的开源消息中间件 高性能低延迟分布式事务 Redis : 高性能缓存工具&#xff0c;数据存储在内存中&#xff0c;读写速度非常快 …

VBA_NZ系列工具NZ03:利用右键进行筛选操作

我的教程一共九套及VBA汉英手册一部&#xff0c;分为初级、中级、高级三大部分。是对VBA的系统讲解&#xff0c;从简单的入门&#xff0c;到数据库&#xff0c;到字典&#xff0c;到高级的网抓及类的应用。大家在学习的过程中可能会存在困惑&#xff0c;这么多知识点该如何组织…

2024西安天文科技与探索装备展览会-相聚7月

2024西安天文科技与探索装备展览会-相聚7月 时间&#xff1a;2024年7月14-16日 地点&#xff1a;西安国际会展中心 首个面向全球天文产业的展览&#xff1b;中国唯一全面反映天文产业链的盛会&#xff1b; 定位于国际高端产业的展会&#xff1b;众多天文机构鼎力支持和重点培…

HTTPS网络请求失败WiFi请求成功

在xml的config文件中添加raw文件位置 raw文件是证书的pem文件去掉key文件 文件名称去掉多余的.cn

炫云客户端12载风华,最初界面竟长这样?满满都是回忆!

2013年&#xff0c;注定是一个意义非凡的节点 让我们将时间轴拨回到2013年 这一年&#xff0c;到底发生了什么呢&#xff1f; 这一年&#xff0c;嫦娥三号成功落月 中国探月工程开启新征程 这一年&#xff0c;工信部向三大运营商颁发4G牌照 标志着我国正式迈入4G时代 同…

51单片机基础篇系列-超声波测距

&#x1f308;个人主页&#xff1a;会编辑的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” HC-SR04产品特点 典型工作用电压&#xff1a;5V 超小静态工作电流&#xff1a;小于2mA 感应角度&#xff1a;不大于15度 探测距离&#xff1a;2cm-400cm 高精度&#…

Spring AOP常见面试题

目录 一、对于AOP的理解 二、Spring是如何实现AOP的 1、execution表达式 2、annotation 3、基于Spring API&#xff0c;通过xml配置的方式。 4、基于代理实现 三、Spring AOP的实现原理 四、Spring是如何选择使用哪种动态代理 1、Spring Framework 2、Spring Boot 五…

【C++】STL(四) deque容器

4、deque容器 4.1 简介 ① 功能&#xff1a;双端数组&#xff0c;可以对头端进行插入删除操作&#xff0c;也可以对尾端进行插入和删除操作。 ② deque与vector区别&#xff1a; vector对于头部的插入效率低&#xff0c;数据量越大&#xff0c;效率越低&#xff0c;例如头部…

掘根宝典之C++迭代器简介

在C中&#xff0c;容器是一种用于存储和管理数据的数据结构。C标准库提供了多种容器&#xff0c;每种容器都有其独特的特点和适用场景。 我们知道啊&#xff0c;我们可以通过下标运算符来对容器内的元素进行访问&#xff0c;但是只有少数几种容器才同时支持下标运算符&#xf…

#车载诊断协议DoIP系列 —— 套接字处理 在线检查

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,喝完再挣扎,出门靠自己,四海皆为家。人生的面吃一…

Java中 final、finally、finalize 有什么区别?

1、典型回答 final、finally、finalize 是 Java 中三个不同的关键字&#xff0c;它们除了长得像之外&#xff0c;其他的&#xff08;作用和含义&#xff09;完全不同。 它们三个的区别就好像&#xff1a;雷、雷锋、雷峰塔之间的区别。&#xff08;是三个完全不同的东西&#…

【动态规划】C++算法312 戳气球

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 LeetCode312 戳气球 有 n 个气球&#xff0c;编号为0 到 n - 1&#xff0c;每个气球上都标有一个数字&#xff0c;这些数字存在数组 nums 中。 现在要求你戳破所有的气球。戳破第 i 个气球&#xff0c;你可以获得 nums…