深入了解二叉搜索树:原理、实现与应用

news2025/1/20 1:36:53

目录

一、介绍二叉搜索树

二、二叉搜索树的基本性质

三、二叉搜索树的实现

四、总结


在计算机科学中,数据结构是构建算法和程序的基础。其中,二叉搜索树(Binary Search Tree,简称 BST)作为一种常见的数据结构,在很多应用中发挥着重要作用。它具有以下特点:每个节点最多有两个子节点,左子节点的值小于父节点的值,右子节点的值大于父节点的值。这一特性使得二叉搜索树具有快速的查找、插入和删除操作。

一、介绍二叉搜索树

定义和特点

  1. 有序性:二叉搜索树中序遍历的结果是按照节点值的大小顺序排列的,因此可以方便地进行有序性相关的操作。

  2. 快速查找:在平衡的情况下,对于含有 n 个节点的二叉搜索树,查找、插入和删除操作的时间复杂度均为 O(log n),这使得它在大规模数据处理中具有明显的优势。

为什么选择二叉搜索树呢?

二叉搜索树在各种算法和程序设计中都有广泛的应用。其快速的查找特性使得它成为了许多数据存储和检索系统中的重要组成部分,例如数据库索引、编译器符号表等。同时,二叉搜索树也作为其他高级数据结构的基础,如平衡二叉树(AVL 树、红黑树)等的实现都离不开对二叉搜索树的理解和运用。

这些基本性质使得二叉搜索树成为一种高效的数据结构,适用于需要频繁进行查找、插入和删除操作的场景。然而,需要注意的是,最坏情况下,即树不平衡的情况下,这些操作的时间复杂度可能会退化到 O(n),因此为了维持其优势,可以采用平衡二叉搜索树(如 AVL 树、红黑树,我们将在后续文章中介绍这两种数据结构)来保持树的平衡性。

通过以上介绍,我们对二叉搜索树的定义、特点以及应用场景有了初步的了解。接下来,我们将深入探讨二叉搜索树的基本性质、实现方式以及在实际应用中的价值。


二、二叉搜索树的基本性质

  • 有序性:若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;它的左右子树也分别为二叉搜索树。

  • 中序遍历有序性:对二叉搜索树进行中序遍历,可以得到一个有序的节点值序列。即,遍历结果按照从小到大(或从大到小)的顺序排列。

  • 查找操作的时间复杂度:对于一个含有 n 个节点的平衡二叉搜索树,查找特定值的节点的时间复杂度为 O(log n)。这是因为每次查找都可以通过与当前节点的比较,缩小查找范围为树的一半,并且随着树的平衡程度提高,查找效率更高。

  • 插入操作的时间复杂度:在平衡的情况下,插入新节点的时间复杂度也是 O(log n)。插入操作首先要找到合适的位置,然后执行节点的插入。由于每次插入都会调整树的结构以保持平衡,所以插入的时间复杂度与树的高度成对数关系。

  • 删除操作的时间复杂度:与插入操作类似,在平衡的情况下,删除节点的时间复杂度也是 O(log n)。删除操作涉及节点的查找、删除以及树的平衡调整。

这些基本性质使得二叉搜索树成为一种高效的数据结构,适用于需要频繁进行查找、插入和删除操作的场景。然而,需要注意的是,最坏情况下,即树不平衡的情况下,这些操作的时间复杂度可能会退化到 O(n),因此为了维持其优势,可以采用平衡二叉搜索树(如 AVL 树、红黑树)来保持树的平衡性。


三、二叉搜索树的实现

  • 节点结构设计

 template<class K>
 struct BSTreeNode {
     typedef BSTreeNode< K> Node;
     BSTreeNode(const  K& key)
         :_left(nullptr), _right(nullptr), _key(key)
     {}
     Node* _left;
     Node* _right;
     K _key;
 };

这段代码使用了模板类定义了一个简单的二叉搜索树节点结构,包含了左子节点指针、右子节点指针和节点值,并使用模板类支持存储不同类型的值。若对模板类使用存在疑问,可以点击此处。这样的设计可以方便地构建二叉搜索树,并在节点中存储不同类型的数据。

  • 查找操作的实现

这个操作一般需要返回指向树中具有需查找的关键字的节点的指针,如果不存在这个节点则返回nullptr。我们根据二叉树的特性可以将查找分为两种,一种递归实现,一种非递归实现。

a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。 b、最多查找高度次,走到到空,还没找到,这个值不存在。 递归实现:

 bool _FindR(Node* root, const K& key) {
     if (root == nullptr)return false;
     if (root->_key > key)
         return _FindR(root->_left, key);
     else if (root->_key < key)
         return _FindR(root->_right, key);
     else
         return true;
 }
 bool FindR(const K& key) { return _FindR(_root, key); }

_FindR中的两次递归调用事实上都是尾递归。尾递归的使用在这里是合理的,因为算法表达式的简明性是以速度的降低为代价的,而这里所使用的栈空间也只不过是 O(log n) 而已。

非递归实现:

 Node* Find(const K& key) {
     Node* cur = _root;
     while (cur != nullptr) {
         if (cur->_key > key)
             cur = cur->_left;
         else if (cur->_key < key)
             cur = cur->_right;
         else
             return cur;
     }
     return nullptr;
 }

查找的代码较为简单,我们不再进行赘述。

  • 插入操作的实现

进行插入操作在概念上是简单的,为了将节点 X 插入到树中,我们可以像使用 Find一样沿着树查找。如果找到值为 X 的节点,则什么也不做(或是做一些”更新“)。否则,将 X 插入到遍历的路径上的最后一个节点上。插入操作同样拥有两种方式,一种递归实现,一种非递归实现。

递归实现:

 bool _InsertR(Node*& root, const K& key) {
     if (root == nullptr) {
         root = new Node(key);
         return true;
     }
     if (root->_key > key)
         return _InsertR(root->_left, key);
     else if (root->_key < key)
         return _InsertR(root->_right, key);
     else
         return false;
 }
 bool InsertR(const K& key) { return _InsertR(_root, key); }

非递归实现:

 bool Insert(const K& key) {
     if (_root == nullptr) {
         _root = new Node(key);
         return true;
     }
 ​
     Node* cur = _root;
     Node* parent = nullptr;
     while (cur != nullptr) {
         parent = cur;
         if (cur->_key > key)
             cur = cur->_left;
         else if (cur->_key < key)
             cur = cur->_right;
         else
             return false;
     }
     cur = new Node(key);
     if (parent->_key > cur->_key)
         parent->_left = cur;
     else
         parent->_right = cur;
     return true;
 }
  • 删除操作的实现

正如许多数据结构一样,最困难的操作是删除。一旦发现要删除的节点,我们就需要考虑多种可能的情况。

如果一个节点是一片树叶,那么可以直接删除。如果节点有一个儿子,则该节点可以将其父节点调整指针绕过该节点,指向该节点的一个儿子,然后删除该节点。如图:

如果一个节点是一片树叶,那么可以直接删除,从图中来看就是删除节点 C 。那么我们只需要将 B 的右节点置空即可。如果节点有一个儿子,从图中来看就是删除节点 B。我们只需要将 A 的右节点指向 节点 C,然后将节点 B delete即可。

复杂的情况是处理具有两个儿子的节点。一般的删除策略是用其右子树中最小的数据代替该节点的数据并删除那个节点(。因为右子树中最小的节点不可能有左儿子。将被删除节点的值与右子树中最小的节点的值进行交换,然后按之前删除有一个儿子的节点的方式删除。从图中来看就说删除节点 A。我们来看下图:

我们要删除节点 A 的话,我们需要找到 A 的右子树中最小的节点,并与其进行节点值的交换,这样不会破坏处理除了要删除节点外的树的有序状态,而且待删除的节点就变成了 A 的右子树中最小的节点。若待删除结点的右子树为空,那么当我们在二叉搜索树当中找到该结点后,只需先让其父结点指向该结点的左孩子结点(其左孩子是nullptr),然后再将该结点释放便完成了该结点的删除,进行删除操作后仍保持二叉搜索树的特性。

删除操作同样拥有两种方式,一种递归实现,一种非递归实现。

递归实现:

 bool _EraseR(Node*& root, const K& key) {
     if (root == nullptr)
         return false;
     if (root->_key > key)
         return _EraseR(root->_left, key);
     else if (root->_key < key)
         return _EraseR(root->_right, key);
     else {
         Node* del = root;
         if (root->_right == nullptr)
             root = root->_left;
         else if (root->_left == nullptr)
             root = root->_right;
         else {
             Node* rightMin = root->_right;
             while (rightMin->_left) {
                 rightMin = rightMin->_left;
             }
             swap(root->_key, rightMin->_key);
             return _EraseR(root->_right, key);
         }
         delete del;
         return true;
     }
 }
 bool EraseR(const K& key) { return _EraseR(_root, key); }

我们一般将_EraseR 函数作为一个私有函数,用于在二叉搜索树中递归地删除节点。将EraseR 函数作为一个公有函数,用于被用户调用。具体分析如下:

  • bool _EraseR(Node*& root, const K& key):函数接受二叉搜索树的根节点引用 root 和要删除的值 key。其中 Node*& root 这是一个引用,指向当前递归调用中正在处理的节点的指针。必须通过引用传递,这样可以确保对节点的修改在递归结束后得以保留。否则无法保证二叉树当中各个结点的连接关系。

  • 如果当前节点为空(即到达叶子节点),则表示找不到要删除的值,返回 false

  • 如果当前节点的值大于要删除的值,则递归地在左子树中删除节点。

  • 如果当前节点的值小于要删除的值,则递归地在右子树中删除节点。

  • 如果当前节点的值等于要删除的值,进行以下操作:

  • 创建一个指针 del 指向当前节点,用于最后释放内存。

  • 如果当前节点的右子树为空,将当前节点的左子树作为当前节点的位置。

  • 如果当前节点的左子树为空,将当前节点的右子树作为当前节点的位置。

  • 如果当前节点的左右子树都存在,找到当前节点右子树中最小的节点 rightMin,将其值与当前节点交换,然后递归地在右子树中删除 rightMin 节点。

  • 删除完成后,释放内存并返回 true

bool EraseR(const K& key) 函数最终会返回 _EraseR 函数的返回值,表示删除是否成功。

通过递归的方式实现了二叉搜索树的节点删除操作,同时处理了不同情况下节点的替换和内存释放。需要注意的是,在删除含有两个子节点的节点时,找到右子树中最小的节点并进行交换操作,确保删除后仍然满足二叉搜索树的性质。

非递归实现:

 bool Erase(const K& key) {
     Node* cur = _root;
     Node* parent = nullptr;
     while (cur != nullptr) {
         if (cur->_key > key) {
             parent = cur;
             cur = cur->_left;
         }
         else if (cur->_key < key) {
             parent = cur;
             cur = cur->_right;
         }
         else{
             if (cur->_left == nullptr) {
                 if (cur == _root) {
                     _root = cur->_right;
                 }
                 else {
                     if (parent->_left == cur) 
                         parent->_left = cur->_right;
                     else 
                         parent->_right = cur->_right;
                 }
                 delete cur;
                 return true;
             }
             else if (cur->_right == nullptr) {
                 if (cur == _root) {
                     _root = cur->_left;
                 }
                 else {
                     if (parent->_left == cur)
                         parent->_left = cur->_left;
                     else
                         parent->_right = cur->_left;
                 }
                 delete cur;
                 return true;
             }
             else
             {
                 //替换
                 Node* rightMin = cur->_right;
                 Node* rightMinParent = cur;
                 while (rightMin->_left != nullptr) {
                     rightMinParent = rightMin;
                     rightMin = rightMin->_left;
                 }
                 cur->_key = rightMin->_key;
                 if (rightMin == rightMinParent->_left)
                     rightMinParent->_left = rightMin->_right;
                 else
                     rightMinParent->_right = rightMin->_right;
                 delete rightMin;
                 return true;
             }
         }
     }
     return false;
 }

bool Erase(const K& key) 函数接受一个键值 key,用于删除二叉搜索树中对应键值的节点。

在函数内部:

  1. 首先,定义了两个指针 curparent,分别初始化为根节点 _root 和空指针。

  2. 进入循环,不断地在二叉搜索树中搜索要删除的节点,直到找到对应的节点或者搜索到空节点为止。

  3. 在每一步迭代中,根据当前节点的键值和目标键值的大小关系,更新 parentcur 指针,以便后续操作使用。

  4. 如果找到了要删除的节点,根据其左右子节点的情况执行相应的删除操作:

 - 如果要删除的节点没有左子节点,直接将其右子节点替换当前节点的位置,并删除当前节点。
 - 如果要删除的节点没有右子节点,直接将其左子节点替换当前节点的位置,并删除当前节点。
 - 如果要删除的节点有左右子节点,找到其右子树中最小的节点 `rightMin`,将其值替换到当前节点,并删除 `rightMin` 节点。

最后,如果成功删除了节点,则返回 true,否则返回 false

这段代码与之前提到的 _EraseR 函数实现了相同的功能,但是采用了迭代的方式进行操作。两种方法都可以有效地删除二叉搜索树中的节点,选择使用哪种方法取决于个人偏好和具体情况。

  • 初始化树与销毁树

构造函数非常简单,构造一个空树即可。

 //方法1:
 BSTree()
     :_root(nullptr)
 {}
 //方法2:
 class BSTree{
 public:
     //...
     BSTree() = default;
 private:
     //....
     Node* _root = nullptr;
 }
  1. 方法1:构造函数 BSTree(): 这是一个无参数的构造函数,在其中将 _root 初始化为 nullptr,表示初始时二叉搜索树为空。

  2. 方法2:类 BSTree 中的私有成员 _root 的初始化: 在类 BSTree 中使用了私有成员 _root 来表示二叉搜索树的根节点,而在这段代码中利用了成员初始化列表的方式将 _root 初始化为 nullptr。这样做可以确保对象被创建时 _root 成员变量会被正确初始化为 nullptr

综合来说,这两种方式都可以用来初始化 _root 成员变量,其中一个是自定义的构造函数,另一个是默认的构造函数。它们的效果是相同的,都用于确保 _root 成员变量在创建二叉搜索树对象时被正确初始化为空。选择使用哪种方式取决于个人偏好和具体需求。

析构函数完成对象中二叉搜索树结点的释放,注意释放时采用后序释放,当二叉搜索树中的结点被释放完后,将对象当中指向二叉搜索树的指针及时置空即可。

 ~BSTree(){
     Destory(_root);
 }
 void Destory(Node* root) {
     if (root == nullptr)
         return;
     Destory(root->_left);
     Destory(root->_right);
     delete root;
 }

BSTree 的析构函数 ~BSTree() 和一个辅助函数 Destory(Node* root),这两个函数的作用是销毁整棵二叉搜索树,释放动态分配的内存。

  1. 析构函数 ~BSTree(): 这是 BSTree 类的析构函数,用于销毁二叉搜索树对象。在析构函数中调用了一个辅助函数 Destory(_root),传入根节点指针 _root,从根节点开始递归销毁整棵树。

  2. 辅助函数 Destory(Node* root): 这个函数用于递归销毁以 root 为根的子树。首先检查当前节点是否为空,如果为空则直接返回。然后递归调用 Destory(root->_left)Destory(root->_right),分别销毁左子树和右子树(即后序释放)。最后释放当前节点所占用的内存空间,即 delete root

    通过这样的设计,当二叉搜索树对象被销毁时,析构函数会自动调用,进而递归地销毁整棵树。这样可以有效释放二叉搜索树节点所占用的内存,避免内存泄漏问题。这种在析构函数中进行递归释放的方式是常见的二叉树析构方法。

  • 拷贝构造函数和赋值重载函数

首先是拷贝构造函数:

 //拷贝树
 Node* _Copy(Node* root)
 {
     if (root == nullptr) //空树直接返回
         return nullptr;
 ​
     Node* copyNode = new Node(root->_key); //拷贝根结点
     copyNode->_left = _Copy(root->_left); //拷贝左子树
     copyNode->_right = _Copy(root->_right); //拷贝右子树
     return copyNode; //返回拷贝的树
 }
 //拷贝构造函数
 BSTree(const BSTree<K>& bst) {
     _root = Copy(bst._root);
 }

用于拷贝二叉搜索树的辅助函数 _Copy 和拷贝构造函数 BSTree(const BSTree<K>& bst)

  1. 辅助函数 _Copy: 这个函数用于深度拷贝一棵以 root 为根的二叉树。如果 root 为空,则直接返回空指针;否则,创建一个新节点 copyNode,并将根节点的键值拷贝过去。然后递归调用 _Copy 函数分别拷贝左子树和右子树,并将得到的左右子树连接到 copyNode 的左右孩子上。最后返回拷贝的树的根节点。

  2. 拷贝构造函数 BSTree(const BSTree<K>& bst): 这是二叉搜索树类的拷贝构造函数,用于根据给定的二叉搜索树 bst 进行拷贝构造。在拷贝构造函数中,将给定二叉搜索树的根节点传入辅助函数 _Copy 中进行拷贝操作,并将得到的拷贝树的根节点赋值给当前对象的根节点 _root

通过这样的设计,可以实现二叉搜索树的拷贝构造,即创建一个与给定二叉搜索树结构相同但是完全独立的新二叉搜索树。这样的拷贝构造函数能够避免共享节点带来的问题,确保每棵树都有自己独立的节点内存空间。避免了浅拷贝带来的危害。

其次是赋值重载函数:

 //方法1:
 BSTree<K>& operator=(BSTree<K> bst){
     swap(_root, bst._root);
     return *this;
 }
 //方法2:
 const BSTree<K>& operator=(const BSTree<K>& bst)
 {
     if (this != &bst) //防止自己给自己赋值
     {
         _Destory(_root); //先将当前的二叉搜索树中的结点释放
         _root = _Copy(bst._root); //拷贝t对象的二叉搜索树
     }
     return *this; //支持连续赋值
 }

在上述代码中,展示了两种不同的赋值操作符重载方法:

  1. 方法1:这里的赋值操作符重载接受一个传值参数 bst。在函数内部,通过调用 swap 函数交换当前对象的根节点和参数对象 bst 的根节点,实现了两个对象之间的指针交换。函数在接收右值时并没有使用引用进行接收(即函数参数为 BSTree<K>),因为这样可以间接调用BSTree的拷贝构造函数完成拷贝构造。我们只需将这个拷贝构造出来的对象的二叉搜索树与this对象的二叉搜索树进行交换,就相当于完成了赋值操作,而拷贝构造出来的对象bst会在该赋值运算符重载函数调用结束时自动析构。最后返回当前对象的引用。

  2. 方法2:这是一种使用常量引用作为参数的赋值操作符重载方式。在函数内部,首先检查是否自己给自己赋值,如果不是,则先销毁当前对象的二叉搜索树,然后通过 _Copy 函数深度拷贝参数对象 bst 的二叉搜索树,将拷贝后的根节点赋值给当前对象的根节点。最后返回当前对象的引用,以支持链式赋值操作。


四、总结

二叉搜索树(Binary Search Tree,BST)是一种常见的数据结构,在很多应用场景中都有广泛的应用。以下是一些二叉搜索树的应用场景:

  • 数据库系统:在数据库系统中,索引通常使用二叉搜索树来实现快速的数据查找和检索操作。

  • 字典:二叉搜索树可以用于实现字典数据结构,使得插入、删除和查找单词等操作更加高效。

  • 文件系统:在文件系统中,可以使用二叉搜索树来组织文件的目录结构,以便快速地查找和管理文件。

  • 符号表:在编程语言中,符号表用于存储变量名和对应的数值或对象,二叉搜索树可以用于实现符号表的快速查找功能。

  • 资源分配:在资源管理系统中,可以使用二叉搜索树来动态地分配和回收资源,以实现高效的资源管理。

总的来说,二叉搜索树在需要快速查找、插入和删除操作的场景中有着广泛的应用,它的特性使得在大量数据中进行高效的搜索成为可能。

二叉搜索树插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。我们观察下图两种搜索树:

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:O(log n)。 最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:\frac{N}{2}。

如果向一棵树中输入预先排序的数据,那么一连串的 Insert 操作将花费二次时间,而用链式表实现 Insert 的代价会非常巨大,因为此时的树只由哪些没有左儿子的节点组成,就退化成单支树,二叉搜索树的性能就失去了。一种解决方法就是要有一个称为平衡的附加条件的结构条件,即任何节点的深度均不能过深。

有许多一般的算法可以实现平衡树。但是,大部分算法都要比标准的二叉查找树复得多,而且更新要平均花费更长的时间,不过,它们确实防止了处理起来非常麻烦的一简单情形。我的下一篇文章中,我们将介绍最老的一种平衡查找树,即AVL树。

因此,在选择数据结构时,在选择数据结构时,需要考虑问题的特点和需求。如果需要频繁进行查找和插入操作,并且不关心维持有序性,可以选择哈希表等数据结构。而如果需要快速查找有序元素、范围查询等操作,并且不需要频繁修改数据,二叉搜索树是一个不错的选择。如果希望在任何情况下都能保持树的平衡,可以选择平衡二叉搜索树,如AVL树或红黑树。

本文代码的完整实现在此处,二叉搜素树 · 比奇堡的Zyb/每日学习 - 码云 - 开源中国 (gitee.com)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1506022.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从新手到高手:一站式 SQL Server 学习平台!

介绍&#xff1a;SQL Server是由微软公司开发的关系数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;自1989年推出以来&#xff0c;已成为全球主流的数据库之一。以下是对SQL Server的详细介绍&#xff1a; 易用性与可伸缩性&#xff1a;SQL Server以其易用性和良好的…

题目:泡澡(蓝桥OJ 3898)

问题描述&#xff1a; 解题思路&#xff1a; 图解&#xff1a;&#xff08;以题目样例为例子&#xff09; 注意点&#xff1a;题目的W是每分钟最大出水量&#xff0c;因此有一分钟的用水量大于出水量则不通过。 补充&#xff1a;差分一般用于对一段区间每个元素加相同值&#x…

arp 代理配置示例

一、应用场景&#xff1a; 当 R1 和 R3 配置静态路由下一跳为接口的时候&#xff0c;让 R2 充当 arp 代理&#xff0c;允许 R1、R3 互访 二、拓朴如下&#xff1a; 三、配置代码&#xff1a; [R1] ip route-static 10.1.23.0 255.255.255.0 GigabitEthernet0/0/0[R2] interf…

Git学习笔记(流程图+示例)

概念 图中左侧为工作区&#xff0c;右侧为版本库。Git 的版本库里存了很多东西&#xff0c;其中最重要的就是暂存区。 • 在创建 Git 版本库时&#xff0c;Git 会为我们自动创建一个唯一的 master 分支&#xff0c;以及指向 master 的一个指 针叫 HEAD。&#xff08;分支和HEAD…

服务器又被挖矿记录

写在前面 23年11月的时候我写过一篇记录服务器被挖矿的情况&#xff0c;点我查看。当时是在桌面看到了bash进程CPU占用异常发现了服务器被挖矿。 而过了几个月没想到又被攻击&#xff0c;这次比上次攻击手段要更高明点&#xff0c;在这记录下吧。 发现过程 服务器用的是4090…

【数据结构】详解时间复杂度和空间复杂度的计算

一、时间复杂度&#xff08;执行的次数&#xff09; 1.1时间复杂度的概念 1.2时间复杂度的表示方法 1.3算法复杂度的几种情况 1.4简单时间复杂度的计算 例一 例二 例三 1.5复杂时间复杂度的计算 例一&#xff1a;未优化冒泡排序时间复杂度 例二&#xff1a;经过优化…

Go语言必知必会100问题-19 浮点数溢出问题

问题呈现 在Go语言中&#xff0c;有两种浮点数类型&#xff08;虚数除外&#xff09;&#xff1a;float32和float64. 浮点数是用来解决整数不能表示小数的问题。我们需要知道浮点数算术运算是实数算术运算的近似&#xff0c;下面通过例子说明浮点数运算采用近似值的影响以及如…

LeetCode:143.重排链表

143. 重排链表 解题过程 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.val val; this.next next; …

python 蓝桥杯之并查集

文章目录 总述合并过程查找过程算法实战实战1 总述 并查集&#xff08;Disjoint-set Union&#xff0c;简称并查集&#xff09;是一种用来管理元素分组情况的数据结构。它主要用于解决集合的合并与查询问题&#xff0c;通常涉及到以下两种操作&#xff1a; 合并&#xff08;Uni…

Redis基础篇:初识Redis(认识NoSQL,单机安装Redis,配置Redis自启动,Redis客户端的基本使用)

目录 1.认识NoSQL2.认识Redis3.安装Redis1.单机安装Redis2.配置redis后台启动3.设置redis开机自启 4.Redis客户端1.Redis命令行客户端2.图形化桌面客户端 1.认识NoSQL NoSQL&#xff08;Not Only SQL&#xff09;数据库是一种非关系型数据库&#xff0c;它不使用传统的关系型数…

Android14 Handle机制

Handle是进程内部, 线程之间的通信机制. handle主要接受子线程发送的数据, 并用此数据配合主线程更新UI handle可以分发Message对象和Runnable对象到主线程中, 每个handle实例, 都会绑定到创建他的线程中, 它有两个作用,: (1) 安排消息在某个主线程中某个地方执行 (2) 安排…

解放生产力,AI加持你也能做这些事!

去年网上流行一个说法叫一人企业或超级IP。一个人就是一家公司&#xff0c;可以更加专注于自身核心技能。既能对工作拥有更大的自主性和控制力&#xff0c;又能舍弃了传统公司管理等繁琐的事务工作&#xff0c;可以全面释放自己的兴趣和潜力。 这个概念给笔者留下了比较深的印…

开源的python 游戏开发库介绍

本文将为您详细讲解开源的 Python 游戏开发库&#xff0c;以及它们的特点、区别和应用场景。Python 社区提供了多种游戏开发库&#xff0c;这些库可以帮助您在 Python 应用程序中实现游戏逻辑、图形渲染、声音处理等功能。 1. Pygame 特点 - 基于 Python 的游戏开发库。…

第3章 数据链路层(1)

3.1数据链路层的功能 加强物理层传输原始比特流的功能,将可能出差错的物理连接改成逻辑上无差错的数据链路[节点的逻辑通道] 3.1.1 为网络提供服务 (1).无确认的无连接服务 适合通信质量好的有线传输链路(实时通信或误码率较低的通信信道)【例如以太网】(2).有确认的无连接服务…

WIN32部分知识介绍

&#x1f308;前言&#xff1a;此篇博客是为下一篇的《贪吃蛇》的做的前戏工作&#xff0c;这篇会讲到贪吃蛇所用到的一些工具以及函数。 首先在讲WIN32的内容时我们想了解一下他的基本概念&#xff1a; Windows 这个多作业系统除了协调应⽤程序的执⾏、分配内存、管理资源之外…

指数移动平均(EMA)

文章目录 前言EMA的定义在深度学习中的应用PyTorch代码实现yolov5中模型的EMA实现 参考 前言 在深度学习中&#xff0c;经常会使用EMA&#xff08;指数移动平均&#xff09;这个方法对模型的参数做平均&#xff0c;以求提高测试指标并增加模型鲁棒。实际上&#xff0c;_EMA可以…

全栈的自我修养 ———— css中常用的布局方法flex和grid

在项目里面有两种常用的主要布局:flex和grid布局&#xff08;b站布局&#xff09;&#xff0c;今天分享给大家这两种的常用的简单方法&#xff01; 一、flex布局1、原图2、中心对齐3、主轴末尾或者开始对其4、互相间隔 二、grid布局1、基本效果2、加间隔3、放大某一个元素 一、…

数据的加密方式及操作方法

目录 一 什么是加密 二 加密方法 对称加密&#xff08;如AES加密&#xff09; 非对称加密&#xff08;如RSA加密&#xff09; 散列&#xff08;如MD5加密&#xff09; 三 加密操作 1 MD5加密&#xff08;散列&#xff09; 2 AES加密&#xff08;对称加密&#xff09; …

HTMK5七天学会基础动画网页10(2)

制作立方体 学完前面的基础内容&#xff0c;制作立方体是个不错的练习方法&#xff0c;先看成品 再分析一下&#xff0c;六个面让每个面旋转平移就可以实现一个立方体&#xff0c;来看代码: <title> 制作立方体</title> <style> *{ margin: 0; padding: 0; …

如何搭建财务数据运营体系:基于财务五力模型的分析

在当今复杂多变的商业环境中,财务数据作为企业决策的重要参考依据,其运营体系的搭建显得尤为关键。一个健全、高效的财务数据运营体系不仅能够为企业提供准确的财务数据支持,还能帮助企业在激烈的市场竞争中保持领先地位。基于财务五力模型的分析,我们可以从收益力、安定力…