数据结构(二)——线性表(顺序表)

news2024/10/2 6:36:52

二、线性表

2.1线性表的定义和基本操作

2.1.1 线性表的基本概念

线性表:是具有相同数据类型的 n 个数据元素的有限序列
(Eg:所有的整数按递增次序排列,不是顺序表,因为所有的整数是无限的)
其中n为表长,当n=0时线性表是一个空表。若用L表示一个线性表,则

a_{i}是线性表中的第i个元素,称为线性表中的位序
a_{1}是表头元素;a_{n}是表尾元素。
除第一个元素外,每个元素有且仅有一个直接前驱;
除最后一个元素外,每个元素有且仅有一个直接后继

2.1.2 线性表的基本操作

  • InitList(&L):初始化表。构造一个空的线性表 L,分配内存空间。
  • DestroyList(&L):销毁操作。销毁线性表,并释放线性表 L 所占用的内存空间。
  • ListInsert(&L, i, &e):插入操作。在表 L 的第 i 个位置插入指定元素 e 。
  • ListDelete(&L, i, &e):删除操作。删除表 L 中第 i 个位置的元素,并用 e 返回删除元素的值。
  • LocateElem(L, e):按值查找操作。在表 L 中查找具有给定关键字值的元素。
  • GetElem(L, i):按位查找操作。获取表 L 中第 i 个位置的元素的值。

其他常用操作

  • Length(L):求表长。返回线性表 L 的长度,即表中元素的个数。
  • PrintList(L):输出操作。按前后顺序输出线性表 L 的所有元素值。
  • Empty(L):判空操作。若表L 为空表,则返回 true,否则返回 false。

对数据操作的思路:创销、增删改查
什么时候要传入引用“&”—―对参数的修改结果需要“带回来”时

#include<stdio.h>

void test ( int &x) {
    x=1024;
    printf ( "test函数内部x=%d\n",x) ;
}

int main() {
    int x =1;
    printf( "调用test前x=d\n",x) ;
    test (x);
    printf ( "调用test后x=%din",x);
}

2.2线性表的顺序表示

2.2.1 顺序表的定义

顺序表:用顺序存储的方式实现线性表
顺序存储:把逻辑上相邻的元素存储在物理位置上也相邻的存储单元中

C语言中通过sizeof(ElementType)可以知道一个数据元素的大小

2.2.2 顺序表的实现

静态分配

#define MaxSize 10 // 定义最大长度 

typedef struct {
	int data[MaxSize]; // 使用静态的数组存放数据元素 
	int length; // 顺序表的当前长度 
}SqList;    //顺序表的类型定义

//基本操作 —— 初始化一个顺序表 
void InitList(SqList &L) {
    for(int i=0;i<MaxSize;i++)
        L.data[i]=0;    //将所有数据元素设置为默认初始值
	L.length = 0; // 顺序表初始长度为0 
}

int main() {
	SqList L; // 声明一个顺序表 
	InitList(L); // 初始化顺序表 
	return 0;
}

如果不设置数据元素的默认值
静态数组的表长确定后就无法更改(存储空间是静态的),最好使用动态分配

动态分配 

#include <stdlib.h>    //malloc函数要使用的头文件
#define InitSize 10 // 顺序表的初始长度

typedef struct {
	int *data; // 声明动态分配数组的指针 
	int MaxSize; // 顺序表的最大容量
	int length; // 顺序表的当前长度 
}SeqList;

// 初始化顺序表 
void InitList(SeqList &L) {
	// 用malloc函数申请一片连续的存储空间 
	L.data = (int *)malloc(InitSize * sizeof(int));  
    //(int*)把malloc返回的指针转换成定义的同类型的指针
	L.length = 0;    //把数据表的长度设为0
	L.MaxSize = InitSize;    //把数据表的最大长度设为初始值
}

// 增加动态数组的长度 
void IncreaseSize(SeqList &L, int len) {
	int *p = L.data;    //把顺序表的data指针的值赋给指针p
	L.data = (int *)malloc((L.MaxSize+len) * sizeof(int));
	for (int i = 0; i < L.length; i++)
		L.data[i] = p[i]; // 将数据复制到新区域 
	L.MaxSize = L.MaxSize + len; // 顺序表最大长度增加len 
	free(p); // 释放原来的内存空间 
}

int main() {
	SeqList L; // 声明一个顺序表 
	InitList(L); // 初始化顺序表 
    ...//往数据表中随便插入几个元素
	IncreaseSize(L, 5);    //再多申请5个空间
	return 0;
}

顺序表的特点:

  1. 随机访问,即可以在 O(1) 时间内找到第 i 个元素
  2. 存储密度高,每个节点只存储数据元素
  3. 拓展容量不方便(即使使用动态分配的方式实现,拓展长度的时间复杂度也比较高,要把数据复制到新的区域)
  4. 插入删除操作不方便,需移动大量元素

2.2.3 顺序表的插入删除

Listlnsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e

#define MaxSize 10 // 定义最大长度  10个元素

typedef struct {
	int data[MaxSize]; // 用静态的数组存放数据元素 
	int length; // 顺序表的当前长度 
}SqList;    //定义数据表SqlList

// 在顺序表i位置插入e
bool ListInsert(SqList &L, int i, int e) {    //注意位序、数组下标的关系 
	if (i < 1 || i > L.length+1) // 判断i的范围是否有效 
		return false;
	if (L.length >= MaxSize) // 判断存储空间是否已满 
		return false;
	for (int j = L.length; j >= i; j--) // 将第i个元素之后的元素后移 
		L.data[j] = L.data[j-1];
	L.data[i-1] = e; // 在位置i处放入e     i-1 下标
	L.length++; // 长度+1 
	return true;
} 

int main() {
	SqList L;    //声明一个顺序表
	InitList(L);    //初始化顺序表
    ...//此次省略一些代码,插入几个元素
	ListInsert(L, 3, 3); //调用函数 在顺序表L的第三个位置插入数据3
	return 0; 
} 

插入操作的时间复杂度 问题规模n=L.length(表长)

最好情况:新元素插入到表尾,不需要移动元素 i = n+1,循环0次;
                  最好时间复杂度 = O(1)

最坏情况:新元素插入到表头,需要将原有的 n 个元素全都向后移动 i = 1,循环 n 次;
                  最坏时间复杂度 = O(n)

平均情况:假设新元素插入到任何一个位置的概率相同,即 i = 1,2,3, … , length+1 的概率都是 p = \frac{1}{n+1},循环 n 次;i=2 时,循环 n-1 次;i=3,循环 n-2 次 …… i =n+1时,循环0次 ,平均循环次数  np + (n-1)p + (n-2)p +... + 1⋅p ==\frac{n(n+1))}{2} \frac{1}{n+1}=\frac{n}{2}
                  平均时间复杂度 = O(n)

ListDelete(&L,i,&e):删除操作。删除表L中第i个位置的元素,并用e返回删除元素的值。

#define MaxSize 10

typedef struct {
	int data[MaxSize];
	int length;
} SqList;

// 删除顺序表i位置的数据并存入e
bool ListDelete(SqList &L, int i, int &e) {    //注意e加了&引用,这里处理的e跟main函数中的e在内存中对应的是同一份数据
	if (i < 1 || i > L.length) // 判断i的范围是否有效
		return false;
	e = L.data[i-1]; // 将被删除的元素赋值给e 
	for (int j = i; j < L.length; j++) //将第i个位置后的元素前移 
		L.data[j-1] = L.data[j];
	L.length--;    //线性表长度-1
	return true; 
}

int main() {
	SqList L;    //声明一个顺序表
	InitList(L);    //初始后顺序表
    ...//此次省略一些代码,插入几个元素
	int e = -1;    //用变量e把删除的元素“带回来”
	if (ListDelete(L, 3, e))    //调用删除操作,删除第三个位置的元素用e返回
		printf("已删除第3个元素,删除元素值为%d\n", e);
	else
		printf("位序i不合法,删除失败\n"); 
	return 0; 
} 

插入操作的时间复杂度 问题规模n=L.length(表长)

最好情况:删除表尾元素,不需要移动其他元素 i = n,循环 0 次;
                  最好时间复杂度 = O(1)

最坏情况:删除表头元素,需要将后续的 n-1 个元素全都向前移动 i = 1,循环 n-1 次;
                  最坏时间复杂度 = O(n)

平均情况:假设删除任何一个元素的概率相同,即 i = 1,2,3, … , length 的概率都是 p = \frac{1}{n},i=1时,循环 n-1 次;i=2 时,循环 n-2 次;i=3,循环 n-3 次 …… i =n时,循环0次 ,平均循环次数  (n-1)p + (n-2)p +... + 1⋅p ==\frac{n(n-1))}{2} \frac{1}{n}=\frac{n}{2}
                  平均时间复杂度 = O(n)

2.2.4 顺序表的查找

GetElem(L,i):按位查找操作。获取表L中第i个位置的元素的值。

// 静态分配的按位查找
#define MaxSize 10    //定义最大长度

typedef struct {
	ElemType data[MaxSize];     //用静态的数组存放元素
	int length;    //顺序表的当前长度
}SqList;         //顺序表的类型定义

ElemType GetElem(SqList L, int i) {  //位序从1开始
	return L.data[i-1];    //数组下标从0开始,所以要-1
}
// 动态分配的按位查找
#define InitSize 10    //顺序表的初始长度

typedef struct {
	ElemType *data;    //指示动态分配数组的指针  *data变量是一个指针 
	int MaxSize;       //顺序表的最大容量
	int length;        //顺序表的当前长度
}SeqList;              //顺序表的类型定义

ElemType GetElem(SeqList L, int i) {
	return L.data[i-1];
}

//*data指向了malloc分配的一整片连续空间的起始地址  即data[i-1]


按位查找的时间复杂度 = O(1)
由于顺序表的各个数据元素在内存中连续存放, 因此可以根据起始地址和数据元素大小立即找到 第 i 个元素——“随机存取”特性

LocateElem(L,e):按值查找操作。在表L中查找具有给定关键字值的元素。 

#define InitSize 10

typedef struct {
	ElemType *data; //指示动态分配数组的指针
	int MaxSize;    //顺序表的最大容量    
	int length;     //顺序表的当前长度
}SqList;

// 查找第一个元素值为e的元素,并返回其位序 
int LocateElem(SqList L, int e) {
	for (int i = 0; i < L.length; i++)
		if (L.data[i] == e)    //依次判断数据表中的数据元素跟传入的数据e是否相等
			return i+1; // 数组下标为i的元素值等于e,返回其位序i+1 
	return 0; // 没有查找到 
}

基本数据类型:int、char、double、 float 等可以直接用运算符“==”比较,结构类型的数据元素不能

按值查找的时间复杂度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1505387.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java反射、枚举类和lambda表达式

前言&#xff1a; 本章我们就来了解Java中的反射和枚举类。枚举类和反射其实有些关系&#xff0c;接下来我们就来学习他们的使用。 反射&#xff1a; 反射的作用&#xff1a; 反射&#xff1a;反射允许对成员变量&#xff0c;成员方法和构造方法的信息进行编程访问。 Java中有…

input中文输入法导致的高频事件

这是基本结构 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>中文输入法的高频事件</title&…

F1 使用问题总结

F1 使用问题总结 问题一&#xff1a;话题发布 问题二&#xff1a;网络问题 文章目录 F1 使用问题总结一&#xff1a;话题发布一&#xff1a;rostopic命令将ROS话题的输出内容记录下来一&#xff1a;ROS分布式远程控制网络配置分布式介绍应用场景主从机配置环境搭建计算机虚拟机…

django学习记录07——订单案例(复选框+ajax请求)

1.订单的数据表 1.1 数据表结构 1.2 数据表的创建 models.py class Order(models.Model):"""订单号"""oid models.CharField(max_length64, verbose_name"订单号")title models.CharField(max_length64, verbose_name"名称&…

【前端】vscode快捷键和实用Api整理

vscode的快捷键 创建a.html 生成模板 !回车 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" …

Galxe:被低估的加密市场掘金地+Web3门户

在BTC ETF获得 SEC 的批准之后&#xff0c;机构资金大量买入推动BTC上涨&#xff0c;并带动整个加密市场回暖进入牛市。那么&#xff0c;对于习惯了熊市保守心态的投资者来说&#xff0c;接下来如何转换策略适应牛市&#xff1f;对即将进场的Web2用户来说&#xff0c;如何玩赚W…

《汇编语言》第3版 (王爽)实验11解析

第11章 实验11解析 检测点11.3 &#xff08;1&#xff09;.补全下面的程序&#xff0c;统计F000&#xff1a;0处32个字节中&#xff0c;大小在[32&#xff0c;128]的数据个数。 mov ax,0f000hmov ds,axmov bx,0mov dx,0mov cx,32s:mov al,[bx]cmp al,32jb s0 ;由于包含32&#…

深入理解Java泛型:灵活、安全、可重用的编程利器

Java泛型是一项强大的编程特性&#xff0c;为程序员提供了一种灵活、类型安全、可重用的编码方式。通过泛型&#xff0c;我们能够编写更加通用、适应多种数据类型的代码&#xff0c;从而提高了代码的灵活性和可维护性。在这篇博客中&#xff0c;我们将深入探讨Java泛型的各个方…

selenium元素定位问题

具体网页信息如下&#xff1a; 定位的时候driver.find_element(By.CLASS_NAME, 方法搞不定。 定位方法&#xff1a; 方法一&#xff1a;通过文本定位 driver.find_element(By.XPATH, "//*[text()高分一号]").click() time.sleep(3) 如果是部分文字 #部分文字py…

GFP-GAN环境搭建推理测试

引子 近期&#xff0c;文生图&#xff0c;wav2lip很火&#xff0c;文生图&#xff0c;见识的太多&#xff0c;不多说了。wav2lip其通过语音驱动唇部动作并对视频质量进行修复&#xff0c;里面一般涉及到三个步骤&#xff0c;文本到语音转化&#xff0c;语音驱动唇部动作&#…

HIVE伪分布安装

引言 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,类似于RDBMS(关系型数据库,如MySQL、Oracle、PgSQL),并提供类SQL的查询功能。 实验准备 1.搭建好伪分布安装模式的Hadoop的虚拟机,并配置了Linux网络。(可看我前面发布的文章) 2.apache…

美国签证|附面签相关事项√

小伙伴最近都忙着办签证吧&#xff01;但是需要注意的是&#xff0c;美国的签证跟其他任何国家的签证不同&#xff0c;并不是办理了就一定拿得到&#xff0c;据说概率是50%左右。所以办理美国签证&#xff0c;不要太着急啦&#xff01;先来了解一下美国签证的相片该怎么拍叭 ✅…

NPP VIIRS卫星数据介绍及获取

VIIRS&#xff08;Visible infrared Imaging Radiometer&#xff09;可见光红外成像辐射仪。扫描式成像辐射仪&#xff0c;可收集陆地、大气、冰层和海洋在可见光和红外波段的辐射图像。它是高分辨率辐射仪AVHRR和地球观测系列中分辨率成像光谱仪MODIS系列的拓展和改进。VIIRS数…

雷卯推荐电磁兼容保护器件-PPTC自恢复保险丝

一、PPTC的简介 自恢复保险丝, 简称PPTC。是一种正温度系数聚合物热敏电阻&#xff0c;作过流保护用&#xff0c;可代替电流保险丝。 电路正常工作时它的阻值很小&#xff08;压降很小&#xff09;&#xff0c;当电路出现过流使它温度升高时&#xff0c;阻值急剧增大几个数量级…

运行时错误‘53’:文件未找到:MathPage.WLL。Word粘贴复制时报错解决方案!

最近写文章使用 Word 时&#xff0c;粘贴复制总是出现这个报错&#xff0c;不能 ctrlc 和 v 好叫人苦恼。百度大致检索了一些过程&#xff0c;仍然有必要记录自己的问题解决过程。 快让本文进你的文件夹吃灰吧~ 报错如下&#xff1a; 运行时错误‘53’&#xff1a; 文件未找…

C++特殊类设计【特殊类 || 单例对象 || 饿汉模式 || 懒汉模式】

目录 1. 只在堆上创建的类 2. 只允许在栈上创建的类 3. 不能被继承的类 4. 不能被拷贝的类 5. 设计一个类&#xff0c;只能创建一个对象&#xff08;单例对象&#xff09; 饿汉模式 懒汉模式 嗨&#xff01;收到一张超美的风景图&#xff0c;愿你每天都能顺心&#xff0…

Java中常用的集合及方法(2)

在Java&#xff08;JDK8&#xff09;中&#xff0c;集合&#xff08;Collection&#xff09;是数据结构的实现&#xff0c;用于存储和操作对象集合。 集合&#xff08;Collection&#xff09;中包含的一般类或接口&#xff1a; 在这其中呢&#xff0c;我们经常使用的其实就是L…

实验一:华为VRP系统的基本操作

1.1实验介绍 1.1.1关于本实验 本实验通过配置华为设备&#xff0c;了解并熟悉华为VRP系统的基本操作 1.1.2实验目的 理解命令行视图的含义以及进入离开命令行视图的方法 掌握一些常见的命令 掌握命令行在线帮助的方法 掌握如何撤销命令 掌握如何使用命令快捷键 1.1.3实验组网 …

数据结构(十)——头插法和尾插法建立单链表

&#x1f600;前言 在数据结构中&#xff0c;单链表是一种常见的数据结构&#xff0c;它由一个头节点和若干个数据节点组成。创建单链表的过程可以通过头插法或尾插法来实现。头插法是将新节点插入到链表的头部&#xff0c;而尾插法是将新节点插入到链表的尾部。本文将介绍头插…

qt 格式化打印 日志 QMessagePattern 格式词法语法及设置

一、qt源码格式化日志 关键内部类 QMessagePattern qt为 格式化打印日志 提供了一个简易的 pattern(模式/格式) 词法解析的简易的内部类QMessagePattern,作用是获取和解析自定义的日志格式信息。 该类在qt的专门精心日志操作的源码文件Src\qtbase\src\corelib\global\qloggi…