Python中的装饰器详解及实际应用【第120篇—装饰器详解】

news2025/1/11 22:29:15

Python中的装饰器详解及实际应用

在Python编程中,装饰器(Decorator)是一种强大而灵活的工具,用于修改函数或方法的行为。它们广泛应用于许多Python框架和库,如Flask、Django等。本文将深入探讨装饰器的概念、使用方法,并提供实际应用的代码示例和详细解析。

IMG_20231006_135657_edit_22919206872021

装饰器是什么?

装饰器是一种特殊的函数,它可以接受一个函数作为参数,并返回一个新的函数,从而实现对原始函数的增强或修改。通过装饰器,我们可以在不修改原始函数代码的情况下,添加新的功能或行为。

基础概念

1. 简单的装饰器

让我们从一个简单的装饰器开始:

def my_decorator(func):
    def wrapper():
        print("在函数执行之前执行一些操作")
        func()
        print("在函数执行之后执行一些操作")
    return wrapper

@my_decorator
def say_hello():
    print("Hello!")

say_hello()

上述代码中,my_decorator 是一个装饰器函数,它接受一个函数 func 作为参数,返回一个新的函数 wrapper。通过 @my_decorator 语法,我们将 say_hello 函数传递给装饰器,实际上等同于执行了 say_hello = my_decorator(say_hello)。运行这段代码,你会看到在调用 say_hello 函数时,会在执行前后分别输出一些信息。

2. 带参数的装饰器

有时我们需要在装饰器中传递一些参数,可以通过在装饰器外再包一层函数来实现:

def repeat(n):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for _ in range(n):
                func(*args, **kwargs)
        return wrapper
    return decorator

@repeat(3)
def say_hello():
    print("Hello!")

say_hello()

这个例子中,repeat 是一个带参数的装饰器,用来指定函数执行的次数。通过 @repeat(3),我们将 say_hello 函数重复执行3次。

实际应用

1. 记录函数执行时间

import time

def timing_decorator(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"函数 {func.__name__} 执行时间:{end_time - start_time} 秒")
        return result
    return wrapper

@timing_decorator
def time_consuming_function():
    # 模拟耗时操作
    time.sleep(2)
    print("函数执行完成")

time_consuming_function()

这个例子展示了如何使用装饰器记录函数的执行时间,从而方便性能分析。

2. 权限验证装饰器

def check_permission(role):
    def decorator(func):
        def wrapper(*args, **kwargs):
            if role == "admin":
                result = func(*args, **kwargs)
                return result
            else:
                raise PermissionError("权限不足")
        return wrapper
    return decorator

@check_permission(role="admin")
def sensitive_operation():
    print("敏感操作已完成")

sensitive_operation()

通过这个例子,我们可以了解如何使用装饰器进行权限验证,只有具备管理员权限的用户才能执行敏感操作。

装饰器是Python中强大而灵活的特性,能够优雅地实现代码的增强和修改。通过本文的介绍,你应该对装饰器的基本概念、使用方法以及实际应用有了更深入的了解。在实际项目中,充分利用装饰器可以使代码更具可读性、可维护性,并提高开发效率。

装饰器进阶应用

3. 缓存装饰器

from functools import lru_cache

@lru_cache(maxsize=3)
def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(5))

在这个例子中,我们使用functools模块中的lru_cache装饰器,实现了斐波那契数列的缓存功能。这能显著提高递归函数的性能,避免重复计算。

4. 日志记录装饰器

def log_function_call(func):
    def wrapper(*args, **kwargs):
        result = func(*args, **kwargs)
        with open("function_log.txt", "a") as log_file:
            log_file.write(f"函数 {func.__name__} 被调用了\n")
        return result
    return wrapper

@log_function_call
def example_function():
    print("这是一个示例函数")

example_function()

通过这个例子,我们展示了如何使用装饰器记录函数的调用,将调用信息追加到日志文件中。

5. Flask中的装饰器应用

from flask import Flask, g, request, redirect, url_for

app = Flask(__name__)

def login_required(func):
    def wrapper(*args, **kwargs):
        if g.user is None:
            return redirect(url_for('login', next=request.url))
        return func(*args, **kwargs)
    return wrapper

@app.route('/dashboard')
@login_required
def dashboard():
    return "欢迎访问仪表盘!"

if __name__ == '__main__':
    app.run()

在Flask框架中,装饰器经常被用于添加额外的功能,比如这里的login_required装饰器,用于验证用户是否登录,未登录则重定向到登录页面。

通过以上实例,我们详细介绍了Python中装饰器的概念和应用。装饰器是Python语言中非常强大的特性之一,可以优雅地解决许多常见问题,提高代码的可读性和可维护性。在实际项目中,合理使用装饰器能够使代码更加模块化、清晰,并带来更好的开发体验。掌握装饰器的使用,将为你的Python编程之路增添不少便捷和灵活性。

高级装饰器技巧

6. 类装饰器

class TimerDecorator:
    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        start_time = time.time()
        result = self.func(*args, **kwargs)
        end_time = time.time()
        print(f"函数 {self.func.__name__} 执行时间:{end_time - start_time} 秒")
        return result

@TimerDecorator
def time_consuming_function():
    # 模拟耗时操作
    time.sleep(2)
    print("函数执行完成")

time_consuming_function()

这个例子演示了如何使用类装饰器来实现函数计时的功能。类装饰器需要实现__init____call__方法,使得类的实例可以像函数一样被调用。

7. 多层装饰器

def uppercase_decorator(func):
    def wrapper(*args, **kwargs):
        result = func(*args, **kwargs)
        return result.upper()
    return wrapper

def exclamation_decorator(func):
    def wrapper(*args, **kwargs):
        result = func(*args, **kwargs)
        return f"{result}!"
    return wrapper

@exclamation_decorator
@uppercase_decorator
def greet(name):
    return f"Hello, {name}"

print(greet("Alice"))

通过使用多个装饰器,我们可以在函数执行前后进行多层的修改。在这个例子中,greet函数被先后应用了uppercase_decoratorexclamation_decorator,使得最终输出变为大写并带有感叹号的问候语。

8. 参数化装饰器

def repeat(n):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for _ in range(n):
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@repeat(n=3)
def say_hello():
    print("Hello!")

say_hello()

在这个例子中,我们展示了如何使用参数化装饰器,通过在装饰器外再包一层函数,从而向装饰器传递参数。

ython中装饰器的各种应用和技巧。装饰器是Python语言中强大的编程工具之一,通过它我们能够优雅而高效地修改函数行为,使得代码更加清晰和可维护。从基础的装饰器概念到实际应用,再到一些高级技巧,这些都为你提供了全面而深入的了解。在你的Python编程旅程中,合理地运用装饰器将成为提高代码质量和开发效率的得力助手。

进一步探索装饰器的应用场景

9. 异常处理装饰器

def handle_exceptions(func):
    def wrapper(*args, **kwargs):
        try:
            result = func(*args, **kwargs)
            return result
        except Exception as e:
            print(f"函数 {func.__name__} 发生异常: {str(e)}")
            # 可以添加额外的异常处理逻辑
            raise
    return wrapper

@handle_exceptions
def divide(a, b):
    return a / b

result = divide(10, 0)

这个例子展示了如何使用异常处理装饰器,使得被装饰的函数在发生异常时不会中断整个程序,而是能够进行适当的处理。

10. 参数验证装饰器

def validate_params(*validations):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for validation in validations:
                validation(*args, **kwargs)
            return func(*args, **kwargs)
        return wrapper
    return decorator

def positive_numbers(a, b):
    if a < 0 or b < 0:
        raise ValueError("参数必须为正数")

@validate_params(positive_numbers)
def multiply(a, b):
    return a * b

result = multiply(5, 3)

在这个例子中,我们定义了一个参数验证装饰器validate_params,它接受一系列验证函数,并在被装饰的函数执行前进行参数验证。

11. 缓存到文件的装饰器

import pickle

def cache_to_file(file_path):
    def decorator(func):
        def wrapper(*args, **kwargs):
            try:
                with open(file_path, 'rb') as cache_file:
                    result = pickle.load(cache_file)
            except (FileNotFoundError, pickle.UnpicklingError):
                result = func(*args, **kwargs)
                with open(file_path, 'wb') as cache_file:
                    pickle.dump(result, cache_file)
            return result
        return wrapper
    return decorator

@cache_to_file("result_cache.pkl")
def expensive_operation():
    # 模拟耗时操作
    time.sleep(3)
    return "结果已生成"

result = expensive_operation()

这个例子展示了如何使用装饰器将函数的结果缓存到文件中,以避免重复计算。如果文件存在,装饰器将加载缓存的结果,否则执行原函数并保存结果。

通过这些高级装饰器的应用场景,我们更全面地认识了装饰器的强大之处。装饰器不仅能够优化代码结构,还能在各种场景中提供灵活的解决方案。在实际项目中,根据需求合理地选择和组合不同的装饰器,将使你的代码更加健壮、可维护,同时也更具扩展性。掌握这些高级装饰器技巧,将进一步提升你的Python编程技能。希望你在今后的项目中能够灵活运用这些知识,写出更加优雅和高效的代码。

深入理解装饰器原理和调试技巧

12. 装饰器内省

装饰器通常会修改函数的一些属性,比如函数的名字、文档字符串等。为了避免这些属性丢失,可以使用functools模块中的wraps装饰器:

from functools import wraps

def my_decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        print("在函数执行之前执行一些操作")
        result = func(*args, **kwargs)
        print("在函数执行之后执行一些操作")
        return result
    return wrapper

@my_decorator
def say_hello():
    """一个简单的打招呼函数"""
    print("Hello!")

print(say_hello.__name__)  # 输出 'say_hello'
print(say_hello.__doc__)   # 输出 '一个简单的打招呼函数'

使用@wraps(func)可以确保装饰器不会改变被装饰函数的属性。

13. 调试装饰器

装饰器可能会使调试变得复杂,因为它们引入了额外的层次。为了更方便地调试被装饰的函数,可以使用functools模块中的update_wrapper函数:

from functools import update_wrapper

def my_debug_decorator(func):
    def wrapper(*args, **kwargs):
        print(f"调试:准备执行 {func.__name__}")
        result = func(*args, **kwargs)
        print(f"调试:{func.__name__} 执行完毕")
        return result
    return update_wrapper(wrapper, func)

@my_debug_decorator
def example_function():
    print("这是一个示例函数")

example_function()

update_wrapper函数会将装饰器函数的属性更新为被装饰函数的属性,从而更好地保留调试信息。

14. 类装饰器的内省和调试

类装饰器可以通过定义__call__方法来实现调用,但也需要使用functools模块的update_wrapper来保留属性:

from functools import update_wrapper

class TimerDecorator:
    def __init__(self, func):
        self.func = func
        update_wrapper(self, func)

    def __call__(self, *args, **kwargs):
        print("计时开始")
        result = self.func(*args, **kwargs)
        print("计时结束")
        return result

@TimerDecorator
def time_consuming_function():
    # 模拟耗时操作
    time.sleep(2)
    print("函数执行完成")

time_consuming_function()

15. 装饰器的性能考虑

尽管装饰器提供了强大的功能,但在考虑性能时需要谨慎使用。一些复杂的装饰器可能会导致函数执行速度变慢,因此在性能关键的部分最好进行测试和优化。

import time

def performance_decorator(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"函数 {func.__name__} 执行时间:{end_time - start_time} 秒")
        return result
    return wrapper

@performance_decorator
def time_consuming_function():
    # 模拟耗时操作
    time.sleep(2)
    print("函数执行完成")

time_consuming_function()

这个例子展示了一个性能测试装饰器,它可以帮助评估被装饰函数的执行时间。

实际案例:自定义参数化装饰器

有时候,我们希望创建一个可以接受参数的装饰器,使得装饰器的行为可以根据不同的参数进行定制。下面是一个自定义的参数化装饰器的实例:

def parameterized_decorator(param):
    def decorator(func):
        def wrapper(*args, **kwargs):
            print(f"装饰器参数:{param}")
            result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@parametrized_decorator("Custom Parameter")
def example_function():
    print("这是一个示例函数")

example_function()

在这个例子中,parameterized_decorator是一个接受参数的外层函数,它返回一个真正的装饰器函数decoratordecorator函数接受被装饰的函数,并在包裹函数wrapper中使用了传递进来的参数param。这样,我们可以根据不同的参数定制装饰器的行为。

实际案例:基于条件的装饰器

有时,我们希望根据某些条件决定是否应用装饰器。以下是一个基于条件的装饰器的示例:

def conditional_decorator(condition):
    def decorator(func):
        def wrapper(*args, **kwargs):
            if condition:
                print("装饰器生效")
                result = func(*args, **kwargs)
                return result
            else:
                print("装饰器未生效")
                return func(*args, **kwargs)
        return wrapper
    return decorator

@conditional_decorator(condition=True)
def example_function():
    print("这是一个示例函数")

example_function()

在这个例子中,conditional_decorator接受一个条件参数,根据条件决定是否应用装饰器。通过这种方式,我们可以根据具体的情况选择是否启用或禁用某个装饰器。

实际案例:缓存装饰器的进阶应用

from functools import lru_cache

def cache_with_parameters(maxsize=128, typed=False):
    def decorator(func):
        @lru_cache(maxsize=maxsize, typed=typed)
        def wrapper(*args, **kwargs):
            print(f"缓存参数:maxsize={maxsize}, typed={typed}")
            result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@cache_with_parameters(maxsize=256, typed=True)
def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(5))

在这个例子中,我们定义了一个cache_with_parameters装饰器,它接受两个参数maxsizetyped,然后将这两个参数传递给functools.lru_cache装饰器。这样,我们就可以根据具体需求定制缓存装饰器的行为。

结语

在本文中,我们深入探讨了Python中装饰器的多个方面,从基础概念到高级应用,再到自定义参数化和条件化装饰器。通过实际案例,我们演示了如何运用装饰器解决不同的问题,并展示了装饰器在提高代码可读性、可维护性和扩展性方面的强大能力。

总结主要内容:

  1. 基础概念: 我们首先介绍了装饰器的基本概念和语法,以及如何创建简单的装饰器来修改函数的行为。

  2. 实际应用: 通过实际应用,我们展示了装饰器在性能计时、权限验证、缓存、日志记录等方面的实际应用场景。

  3. 高级技巧: 探讨了高级装饰器技巧,包括类装饰器、多层装饰器、参数化装饰器等,以及对装饰器进行内省和调试的方法。

  4. 实际案例: 我们通过实际案例,演示了如何创建自定义参数化和条件化装饰器,以及对缓存装饰器进行进阶应用。

最后,本文旨在帮助读者深入理解和灵活运用装饰器,提升其在Python编程中的技能水平。通过这些技巧,你将更好地利用装饰器优化代码结构,使代码更清晰、更健壮,从而提高开发效率。希望这篇文章对你在Python中使用装饰器时有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1502804.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C/C++实现代码雨效果

C/C实现代码雨效果 目录 C/C实现代码雨效果 说明使用的库说明测试代码效果图 说明 最近整理电脑资料&#xff0c;翻出了以前写的代码&#xff0c;顺便整理一下到博客上&#xff0c;当做一次备份记录 先看看静态效果 需要分为以下步骤实现 生成代码串把代码串绘制到窗口中使…

NUMA架构

UMA架构 在单cpu的时代&#xff0c;cpu与内存的交互需要通过北桥芯片来完成。cpu通过前端总线(FSB&#xff0c; front Side Bus)连接到北桥芯片&#xff0c;由北桥芯片连接到内存&#xff08;内存控制器是集成在北桥芯片里的&#xff09;。为了提升性能&#xff0c;cpu的频率不…

Web APIs 4 日期对象、节点操作

Web APIs 4 一、日期对象实例化日期对象方法案例&#xff1a;页面显示时间 时间戳 二、节点操作查找结点①父节点查找②子节点查找③兄弟节点查找 增加节点克隆节点删除节点 三、M端事件四、JS插件 一、日期对象 学习路径&#xff1a;实例化、日期对象方法、时间戳 实例化 …

论文学习——一种新的具有分层响应系统的动态多目标优化算法

论文题目&#xff1a;A Novel Dynamic Multiobjective Optimization Algorithm With Hierarchical Response System 一种新的具有分层响应系统的动态多目标优化算法&#xff08;Han Li , Zidong Wang , Fellow, IEEE, Chengbo Lan, Peishu Wu , and Nianyin Zeng , Member, IE…

c++ 常用的STL

前言 写这篇博客目的是为了记录在刷算法题中使用过的STL&#xff0c;因为有些不太常用的会遗忘。这篇博客只是作为笔记&#xff0c;不是详细的STL&#xff0c;因此只会对常用方法说明&#xff0c;不会详细介绍。此外在后面用到新的STL内容时会再补充。 列队 基础列队 基本列…

YOLOv8-Seg改进:特征融合篇 | GELAN(广义高效层聚合网络)结构来自YOLOv9

🚀🚀🚀本文改进:使用GELAN改进架构引入到YOLOv8 🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1)手把手教你如何训练YOLOv8-seg; 2)模型创新,提升分割性能; 3)独家自研模块助力分割; 1.YO…

申请公众号上限是多少

一般可以申请多少个公众号&#xff1f;公众号申请限额在过去几年内的经历了很多变化。对公众号申请限额进行调整是出于多种原因&#xff0c;确保公众号内容的质量和合规性。企业公众号的申请数量从50个到5个最后到2个&#xff0c;对于新媒体公司来说&#xff0c;这导致做不了公…

基于深度视觉实现机械臂对目标的识别与定位

机械臂手眼标定 根据相机和机械臂的安装方式不同&#xff0c;手眼标定分为眼在手上和眼在手外两种方式&#xff0c;双臂机器人的相机和机械臂基座的相对位置固定&#xff0c;所以应该采用眼在手外的手眼标定方式。 后续的视觉引导机械臂抓取测试实验基于本实验实现&#xf…

CentOS 7 devtoolset编译addressSanitizer版本失败的问题解决

在我的一个Cent OS7开发环境中&#xff0c;按https://yeyongjin.blog.csdn.net/article/details/134178420的方法升级GCC版本到8.3.1。 这两天&#xff0c;要用Google的addressSanitizer检验内存问题&#xff0c;加上编译参数后&#xff0c;却发现编译不通过。configure时直接退…

微服务韧性工程:利用Sentinel实施有效服务容错与限流降级

目录 一、雪崩效应 二、Sentinel 服务容错 2.1 Sentinel容错思路 2.2 内部异常兼容 2.3 外部流量控制 三、Sentinel 项目搭建 四、Sentinel 工作原理 服务容错是微服务设计中一项重要原则和技术手段&#xff0c;主要目标是在服务出现故障、网络波动或其他不可预见的异常情况…

5G 网络切片VLAN ID配置错误导致业务不可用

【摘要】随着电联5G共建共享工作的开展&#xff0c;无法及时有效观测到单逻辑站点的相关指标&#xff0c;导致单运营商用户业务出现异常。本案例中着重对单运营商用户无法使用网络进行相关参数排查&#xff0c;从KPI性能指标结合故障告警发生时间&#xff0c;从而分析由于网络切…

Web APIs 5 Window对象、本地存储

Web APIs 5 一、Window对象1、BOM2、定时器-延时函数3、JS执行机制4、location对象案例&#xff1a;5秒钟之后跳转的页面 5、navigator对象6、histroy对象 二、本地存储本地存储 localStorage本地存储 sessionStorage存储复杂数据类型案例&#xff1a;学生就业统计表字符串拼接…

光致发光谱荧光量子效率测量系统

荧光量子积分球是一个专门用于测量荧光量子效率的设备。荧光量子效率是指物质吸收光后所发射的荧光光子数与所吸收的激发光光子数之间的比值。这种设备通过比较待测荧光物质和已知荧光量子产率的参比物质&#xff0c;在相同激发条件下所测得的积分荧光强度&#xff08;即校正的…

微信小程序实现上拉加载更多

一、前情提要 微信小程序中实现上拉加载更多&#xff0c;其实就是pc端项目的分页。使用的是scroll-view&#xff0c;scroll-view详情在微信开发文档/开发/组件/视图容器中。每次上拉&#xff0c;就是在原有数据基础上&#xff0c;拼接/合并上本次上拉请求得到的数据。这里采用…

搜狐新闻Hybrid AI引擎端侧离线大语言模型探索

本文字数&#xff1a;3027字 预计阅读时间&#xff1a;20分钟 01 一、导读 • LLM 以及移动平台落地趋势 • 搜狐AI引擎内建集成离线可运行的GPT模型 • Keras 定制预训练模型 • TensorFlow Lite converter 迁移到移动设备 02 二、LLM 1.1什么是LLM L…

HTML入门:属性

你好&#xff0c;我是云桃桃。今天来聊一聊 HTML 属性写法和特点。 HTML 属性是用于向 HTML 标签&#xff08;也叫 HTML 元素&#xff09;提供附加信息或配置的特性。 如果说&#xff0c;把HTML 标签比作一个房子&#xff0c;HTML 标签定义了房子的结构和用途&#xff0c;比如…

蓝桥杯之【01背包模版】牛客例题展示

牛客链接 #include <bits/stdc.h> using namespace std; int n,V; const int N1010; int v[N],w[N]; int dp[N][N]; int main() {cin>>n>>V;for(int i1;i<n;i){cin>>v[i]>>w[i];}for(int i1;i<n;i){for(int j1;j<V;j){dp[i][j]dp[i-1][…

idea远程服务器debug

前提 本地代码和服务器代码一致 idea中创建远程服务 一般只需要修改ip&#xff0c;注意这边的端口是监听Socket的端口&#xff0c;不是服务的端口 然后把运行参数复制一下 -agentlib:jdwptransportdt_socket,servery,suspendn,address5005 tomcat启动 在tomcat的lib下的c…

OJ_二叉排序树

题干 C实现 循环双指针法(一个指向父亲&#xff0c;一个指向待插入结点) #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <queue> using namespace std;struct TreeNode {char data;TreeNode* left;TreeNode* right; };void InsertBST(TreeNode* …

扩展黄永刚原始晶体塑性程序加入AF背应力模拟金属疲劳问题

参考文献&#xff1a;《Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach》 在原始程序中修改流动方程&#xff0c;加入背应力项&#xff0c;引入运动硬化项&#xff0c;从而可以描述多晶金属循环…