【博士每天一篇文献-综述】Modular Brain Networks

news2024/12/30 3:06:17

阅读时间:2023-11-27

1 介绍

年份:2016
作者:Olaf Sporns,Richard Betzel,印第安纳大学心理与脑科学杰出教授
期刊: Annual review of psychology
引用量:1205
详细介绍了模块化大脑网络及其如何利用图论工具进行分析,以检查大脑连接的结构和功能。首先介绍了大脑网络的概念以及检测这些网络中模块的方法。然后讨论了结构和功能大脑网络中存在模块的证据,并探讨了这些模块在大脑进化和连接性最小化中的生物作用。总之,论文详细陈述了模块化大脑网络的相关概念、生物作用和检测方法的研究进展。

2 创新点

(1)整合网络建模和大脑连接的方法,通过图论工具分析模块化大脑网络的结构和功能连接。
(2)探讨大脑结构和功能网络中模块存在的证据,并揭示这些模块在大脑进化和减小网络连接方面的潜在功能角色。
(3)讨论了模块检测的各种方法,重点关注最大化模块性的方法,以将网络分割为最大化模块质量函数的社区。
(4)回顾了网络神经科学领域的最新进展,特别是模块化大脑网络的研究。

3 相关研究

截屏2024-03-08 上午9.11.20.png
(1)模块化的概念
模块是网络中的一个密集连接节点的子网络,与网络的其余部分稀疏连接。网络中的模块对应密集连接的节点群,也被称为网络社区。
模块化是根据模块内部密度是否高于或低于预期密度来对分区进行评分的过程。模块在网络中的检测可能容易定义,但实际上却面临着一些障碍和受到一些误解和偏见的影响。
(2)模块化的作用
模块化是复杂生物系统的一般特征,模块在多个生物领域中的潜在功能角色已经被考虑过,从进化和发育到新陈代谢和信息处理。模块化大脑网络的潜在作用包括促进进化能力、节约布线成本,以及创造专门信息和复杂动态。模块化的组织结构对生物系统在进化环境中的适应性和稳健性带来显著优势,增加系统的进化能力。同时,模块化还具有提高系统对突发干扰的稳健性的益处。模块化结构的节点紧凑性有助于节约布线成本。总的来说,模块化对于稳定可遗传变异的产生和应对环境变化的新解决方案的出现至关重要。
大脑网络的模块化组织在信息分布和处理中起着重要作用,促使信息的丰富分布。模块化网络促进了更复杂的动态,包括亚稳态和可同步性。 Hierarchical modularity(分层模块化)在实现关键性动态的重要性上起着关键作用。模块化大脑网络对塑造大脑动态具有重要意义,促使人们对与临床疾病的大脑功能紊乱相关的模块化变化进行进一步实证研究。

2 模块化检测方法

参考:Fortunato S. 2010. Community detection in graphs. Phys. Rep. 486(3):75–174
(1)最大Q矩阵
计算Q矩阵,越大越好。最大化Q值的方法包括分裂算法、谱分解、极端优化、贪心算法和模拟退火等。
截屏2024-03-08 上午9.25.15.png
aij代表节点i和j之间的连线数量。pij表示根据一个空模型,对于无向网络,该模型给出了一个预期的权重p ij =kij2m,其中ki = ∑aij是一个节点的度,2m = ∑aij 是网络中连接的总数。Kronecker delta函数δ(σi, σj)在节点的社区分配σi∈{1,…, K}相同时等于1,在不同时等于0,确保Q的贡献仅来自于σi = σj的{i, j}对,即来自于被分配到同一社区的节点对。
参考:Finding community structure in very large networks、Community structure in directed networks
(2)模块系数
截屏2024-03-08 上午9.34.45.png
截屏2024-03-08 上午9.36.30.png
正模块化Q+代表模块内正相关系数的过量,可以增加总体模块化。负模块化Q-代表模块内负系数的过量,会降低总体模块化。正模块化代表模块内正相关系数的过剩,而负模块化代表模块内负相关系数的过剩。
参考:Analysis of community structure in networks of correlated data、Weight-conserving characterization of complex functional brain networks
(3)多分辨率技术
通过调节分辨率参数来揭示不同大小的社区。分辨率参数可以调整社区尺寸和数量,但并不能完全解决分辨率限制问题。选择合适的分辨率参数可以通过多次运行算法生成社区划分的集合,然后通过相似性度量来选择最优参数值。其他选择参数值的方法包括交叉验证、与特定领域知识的对比以及与空模型的比较。
截屏2024-03-08 下午1.39.34.png
参考:Analysis of the structure of complex networks at different resolution ´ levels、Statistical mechanics of community detection.
(4)耦合系数
截屏2024-03-08 上午9.57.10.png
将多个网络层面组合成多层面网络堆栈,并引入耦合参数来跨层面连接相应的节点,从而找到一致的社区标签而无需在不同层面间匹配社区。
参考:Community structure in timedependent, multiscale, and multiplex networks.
(5)参与系数
用于衡量节点连接在不同社区之间的分布情况,值接近1表示连接均匀分布在所有社区,接近零表示大部分连接在一个社区内。节点的社区内度数z-score指出节点与同一社区其他节点的连接数量,正值表示节点在同一社区内连接紧密,负值表示相反。通过参与系数和z-score可以区分节点的功能角色,包括中心节点和外围节点。中心节点通常与同一社区内的节点连接更多,不同参与系数的中心节点可进一步细分为省级中心节点、连接中心节点和孤立中心节点。这种以模块划分为基础的节点角色分配方法适用于结构和功能网络,并能揭示特别重要的节点在维持模块间通信方面的作用。还可以使用区域连接多样性的测量方法来表达节点在多个模块之间的关系,这在有符号网络中也同样适用。
参考:Functional cartography of complex metabolic networks
(6)基于距离的模块
是一种简单的复杂网络模块检测方法,其基本思想是将网络节点映射到高维空间中,认为模块在这个空间中互相靠近。通过测量节点之间的距离来确定模块,常用的方法是通过节点之间的连接情况来计算距离。然后可以利用距离算法如k-means或聚类算法来识别模块。虽然这种方法简单,但它定义的社区与密度相互连接的概念有所不同。
参考:The Elements of Statistical Learning
(7)Infomap算法
是一种基于信息理论的社区检测方法,通过将随机游走在网络中的路径作为依据来进行社区检测。该算法通过考虑随机游走中的正常规律性,使用两个不同的名称列表来更有效地描述随机游走,其中一个列表分配给社区独特的名称,另一个列表则分配给社区内的节点。Infomap算法通过评估描述长度来评分分区,最佳分区是能够通过最大程度地压缩随机游走描述的分区。
参考:Deciphering network community structure by surprise
(8)block models
是一种网络生成模型,用于解决社区检测问题。它假设网络连接是独立生成的,并且连接的概率取决于节点所属的社区。通过估计这些参数,可以确定生成了给定网络的可能性最大的模型。与其他社区检测方法相比,block models 提供更灵活的识别不同体系结构的能力,例如核-边缘和双分组组织。通过估计参数,block models可以检测到比大多数其他方法更多样化的社区类型。
参考:Models and Methods in Social Network Analysi、 Community detection as an inference problem.
(9)重叠社区
检测重叠社区的方法包括使用固定大小的团枚举来构建团邻接矩阵,以及将网络转换为对应的线图来识别重叠社区。线图中的节点代表原始网络中的连接,节点之间连接表示在原始网络中的连接共享一个节点。这些方法将节点分配到多个社区,使得节点可以同时隶属于多个子网络。一种方法是对线图进行加权后应用非重叠社区检测方法,另一种方法是根据相似性对线图连接进行加权然后进行分层聚类。这些方法提供了一种探索网络中重叠社区结构的方式。
参考:Uncovering the overlapping community structure of ´ complex networks in nature and society
(10)独立成分分析
Independent Component Analysis(ICA)是一种用于从功能性数据中发现社区的重要技术。ICA假设体素的时间序列是一小组原型时间序列的线性组合。与主成分分析类似,主成分在空间和时间上都是独立的,ICA得到的原型是在空间或时间上最大程度地独立的。如果指定了空间独立性,结果将是体素加载到最小重叠的空间原型模式上,这可解释为社区。有趣的是,从功能性磁共振成像(fMRI)功能连接网络中进行聚类或社区检测得到的模式通常与ICA得到的模式非常相似。相比于基于网络的模块化方法,ICA需要用户选择所需的组件数(即模型顺序),并且提供不了这些组件之间的关系信息(例如通过模块间的连接)。
参考:Investigations into resting-state connectivity using independent component analysis. 、
Multivariate statistical analysis for neuroimaging data.
(11)共识聚类
使用共识聚类来结合多种社区检测方法或多次运行的结果,以获得平均或共识的社区划分。共识聚类通过对网络的关联矩阵进行迭代聚类来实现,其中通过阈值处理共识矩阵来增强一致性的节点对,并减弱不一致性的节点对。共识社区划分的方法可以提高不同方法获得的社区划分之间的一致性,并通常会收敛为一个共识社区划分。
参考:Consensus clustering in complex networks

3 模块分区的显著性和稳健性

如何确定社区的质量达到何种程度才能自信地说系统具有模块化属性

  • 一种方法是比较经验网络上估计的社区结构质量与在完全随机网络集合上进行的同样测量的结果。
  • 另一种方法是鲁棒性测试,通过向社区检测过程添加一些噪声来诱导网络社区结构的变化。
  • 还有一种探测方法是OSLOM,该方法通过在没有社区结构的随机网络中寻找具有相似属性的社区来评分社区的统计显著性。

4 思考

这篇论文,详细给出了模块化的定义、概念、生物作用,并给出了检测模块化结构的多种方法。最后给出了评价模块化结构的鲁棒性检验方法。系统的由浅入深讲解了模块化的相关研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1501806.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在【IntelliJ IDEA】中配置【Tomcat】【2023版】【中文】【图文详解】

作为一款功能强大的集成开发环境(IDE),IntelliJ IDEA为Web服务器提供了卓越的支持,从而极大地简化了程序员在Web开发过程中的工作流程。学习Java Web开发实质上就是掌握如何创造动态Web资源,这些资源在完成开发后&…

宠物空气净化器值得入手吗?选购宠物空气净化器关注哪些方面?

一开始养猫时,每天看着可爱的猫咪在家里快乐奔跑,让人心情愉悦。然而,作为铲屎官都知道,猫咪会掉毛,特别是在换毛期间,地板、沙发上都会有一大堆猫毛,甚至衣服也可能沾满猫毛。养猫家庭中&#…

Flink 物理执行图

文章目录 物理执行图一、Task二、ResultPartition三、ResultSubpartition四、InputGate五、InputChannel 物理执行图 JobManager根据ExecutionGraph对作业进行调度,并在各个TaskManager上部署任务。这些任务在TaskManager上的实际执行过程就形成了物理执行图。物理…

快速上手:使用Hexo搭建并自定义个人博客

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

算法---双指针练习-6(查找总价格为目标值的两个商品)

查找总价格为目标值的两个商品 1. 题目解析2. 讲解算法原理3. 编写代码 1. 题目解析 题目地址:点这里 2. 讲解算法原理 算法的基本思想是首先初始化两个指针begin和end,分别指向数组的起始位置和末尾位置。 接下来,算法使用一个循环来移动e…

瑞芯微 | I2S-音频基础分享

1. 音频常用术语 名称含义ADC(Analog to Digit Conversion)模拟信号转换为数字信号AEC(Acoustic Echo Cancellor)回声消除AGC(Automatic Gain Control)自动增益补偿,调整MIC收音量ALSA&#xf…

Stable Diffusion 3报告

报告链接:https://stability.ai/news/stable-diffusion-3-research-paper 文章目录 要点表现架构细节通过重新加权改善整流流量Scaling Rectified Flow Transformer Models灵活的文本编码器RF相关论文 要点 发布研究论文,深入探讨Stable Diffuison 3的…

HarmonyOS 数据持久化 关系型数据库之 初始化操作

上文 HarmonyOS 数据持久化之首选项 preferences 我们有说用户首选项 但它只能处理一些比较简单的数据类型结构 的持久化处理 如果是一些批量较大 结构较为复杂的数据结构 那么 首选项就无法满足了 我们就要选择 关系型数据库 通过 SQLite 组件实现的一种本地数据库&#xff0…

IPSEC VPPN实验

实验背景:FW1和FW2是双机热备的状态。 实验要求:在FW和FW3之间建立一条IPSEC通道,保证10.0.2.0/24网段可以正常访问到192.168.1.0/24 IPSEC VPPN实验配置(由于是双机热备状态,所以FW1和FW2只需要配置FW1主设备即可&…

企业专属采购商城搭建,对接电商平台数量越多越好吗?

近年来在国家政策驱动和国央企的引领示范下,企业采购逐渐从线下向电商化迈进,采购电商平台的应用让越来越多的传统企业、中小企业开始意识到数字化商城采购的价值。搭建企业自有专属采购商城,内接企业各类信息管理系统,外联电商采…

spring-cloud-openfeign 3.0.0(对应spring boot 2.4.x之前版本)之前版本feign整合ribbon请求流程

在之前写的文章配置基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136060312 下图为自己整理的

阿里云k8s内OSS报错UnKnownHost。

这个问题就是链接不上oss属于网络问题: 1.排查服务器 在服务器(ecs)上直接ping oss地址看是否能够通。 不通就要修改dns和hosts(这个不说,自己网上查) 2.排查容器 进去ping一下你的容器是否能访问到oss…

07.axios封装实例

一.简易axios封装-获取省份列表 1. 需求:基于 Promise 和 XHR 封装 myAxios 函数,获取省份列表展示到页面 2. 核心语法: function myAxios(config) {return new Promise((resolve, reject) > {// XHR 请求// 调用成功/失败的处理程序}) …

生活的色彩--爱摸鱼的美工(17)

题记 生活不如意事十之八九, 恶人成佛只需放下屠刀,善人想要成佛却要经理九九八十一难。而且历经磨难成佛的几率也很小,因为名额有限。 天地不仁以万物为刍狗! 小美工记录生活,记录绘画演变过程的一天。 厨房 食…

BUUCTF---[MRCTF2020]你传你呢1

1.题目描述 2.打开题目链接 3.上传shell.jpg文件&#xff0c;显示连接成功&#xff0c;但是用蚁剑连接却连接不上。shell文件内容为 <script languagephp>eval($_REQUEST[cmd]);</script>4.用bp抓包&#xff0c;修改属性 5.需要上传一个.htaccess的文件来把jpg后缀…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Marquee)

跑马灯组件&#xff0c;用于滚动展示一段单行文本。仅当文本内容宽度超过跑马灯组件宽度时滚动&#xff0c;不超过时不滚动。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 无 接口 Ma…

CleanMyMac X4.15.0专为macOS设计的清理和优化工具

CleanMyMac X 是一款专为 macOS 设计的清理和优化工具。其基本功能和特点主要包括&#xff1a; 系统清理&#xff1a;CleanMyMac X 可以扫描并清除 macOS 系统中的垃圾文件&#xff0c;如缓存、日志、无用的语言文件等&#xff0c;从而释放硬盘空间并提高系统性能。应用程序管…

Webpack常用配置及作用

一 、 二、 三、 四、 五、 六、 七、 八、

AVL树讲解

AVL树 1. 概念2. AVL节点的定义3. AVL树插入3.1 旋转 4.AVL树的验证 1. 概念 AVL树是一种自平衡二叉搜索树。它的每个节点的左子树和右子树的高度差&#xff08;平衡因子&#xff0c;我们这里按右子树高度减左子树高度&#xff09;的绝对值不超过1。AVL的左子树和右子树都是AV…

Cloud-Eureka服务治理-Ribbon负载均衡

构建Cloud父工程 父工程只做依赖版本管理 不引入依赖 pom.xml <packaging>pom</packaging><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.3.9.RELEA…