JVM-垃圾收集器G1

news2024/11/18 2:28:28

G1垃圾回收器

概述:
  • 是一款面向服务器的垃圾收集器,主要针对配备多个处理器及大容量内存的机器
  • 以极高效率满足GC停顿时间要求的同时,还具备高吞吐量性能特征.
  • G1保留了年轻代和老年代的概念,但不再是物理隔阂了,它们都是(可以不连续)Region的集合。

特点:
  • 使用参数:G1垃圾收集器:-XX:+UseG1GC
  • 将Java堆内存 拆分成很多大小相等的Region。每个Region大小计算规则?
    •  Region 基于堆大小默认计算。(堆大小设置:-Xms -Xmx)
      • 计算方式: 如 4G堆大小 ,每个Region的大小就是2MB=4096MB/2048个Region。
      • 规则:Region 必须是2的倍数 如1MB 2MB...
      • 手动调整:-XX:G1HeapRegionSize
  • Region的区域功能 可能会动态变化
    • 一个Region可能之前是年轻代,如果Region进行了垃圾回收,之后可能又会变成老年代。
  • 可设置垃圾回收预期时间。
    • 目的: 尽量把垃圾回收时间控制在一个指定的时间范围内。
G1在各个分代特性
新生代:
  • 初始新生代对堆内存的占比5%。(eg:4G堆内存 占200M、约100Region)
    • 新生代占比调整:XX:G1NewSizePercent     (正常情况维持默认即可)
  • 依旧存在Edgen和Survivor的概念
    • 新生代、老年代区分各自占据不同Region
    • 新生代Region区分可通过 -XX:SurvivorRatio=8 比例区分
      •  如:100个Region,可能80个Region就是Eden,两个Survivor各自占10个Region。
  • 对象不停的在新生代里分配,新生代的Region会不断增加,Eden和Survivor对应的Region也会不断增加。
老年代:
  • G1的内存模型下,新生代(max=60%)和老年代各自都会占据一定的Region。(max=40%)
  • 对象什么时候进去老年代?(规则同CMS进入老年代不同在于大对象的处理)
    • 达到一定年龄(对象在新生代躲过了很多次的垃圾回收
      •  “-XX:MaxTenuringThreshold”参数可以设置这个年龄,他就会进入老年代
    • 动态年龄判定规则
      • 发现某次新生代GC过后,存活对象超过了Survivor的50%
      • 判断eg:年龄为1岁,2岁,3岁,4岁的对象的大小总和超过Survivor的50%,
      • 此时4岁以上的对象全部会进入老年代,这就是动态年龄判定规则。             
G1内存模型下对大对象的分配和回收的策略
  • G1垃圾收集器对于对象什么时候会转移到老年代跟之前讲过的原则一样,唯一不同的是对大对象的处理,
  • G1有专门分配 大对象的Region叫Humongous区,而不是让大对象直接进入老年代的Region中。
  • 在G1中,大对象的判定规则就是一 个大对象超过了一个Region大小的50%,比如按照上面算的,每个Region是2M,只要一个大对象超过了1M,就会被放 入Humongous中。
  • 一个大对象如果太大,可能会横跨多个Region来存放。 Humongous区专门存放短期巨型对象,不用直接进老年代,可以节约老年代的空间,避免因为老年代空间不够的GC开 销
  • Full GC的时候除了收集年轻代和老年代之外,也会将Humongous区一并回收。           
           

G1收集器一次GC的运作过程

初始标记(initial mark,STW):
  • 暂停所有的其他线程,并记录下gc roots直接能引用的对象,速度很快 ;
并发标记(Concurrent Marking):
  • 同CMS的并发标记
最终标记(Remark,STW):
  • 同CMS的重新标记
筛选回收(Cleanup,STW):
  • 筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期 望的GC停顿时间(可以用JVM参数 -XX:MaxGCPauseMillis指定)来制定回收计划
    • 比如说老年代此时有1000个 Region都满了,但是因为根据预期停顿时间,本次垃圾回收可能只能停顿200毫秒,那么通过之前回收成本计算得 知,可能回收其中800个Region刚好需要200ms,那么就只会回收800个Region(Collection Set,要回收的集 合),尽量把GC导致的停顿时间控制在我们指定的范围内。
  • 这个阶段其实也可以做到与用户程序一起并发执行,但 是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。
  • 不管是年轻代或是老 年代,回收算法主要用的是复制算法,将一个region中的存活对象复制到另一个region中,这种不会像CMS那样 回收完因为有很多内存碎片还需要整理一次,G1采用复制算法回收几乎不会有太多内存碎片。(注意:CMS回收阶 段是跟用户线程一起并发执行的,G1因为内部实现太复杂暂时没实现并发回收,不过到了Shenandoah就实现了并 发收集,Shenandoah可以看成是G1的升级版本)

G1高效回收实现

  • G1收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的Region(这也就是它的名字Garbage-First的由来),
    • 比如一个Region花200ms能回收10M垃圾,另外一个Region花50ms能回收20M垃圾,在回收时间有限情况下,G1当然会优先选择后面这个Region回收
  • 这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限时间内可以尽可能高的收集效率。

G1的重要特性

并行与并发
  • G1能充分利用CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿时间。部分其他收集器原本需要停顿Java线程来执行GC动作,G1收集器仍然可以通过并发的方式让java程序继续执行。
分代收集
  • 虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但是还是保留了分代的概念。
空间整合
  • 与CMS的“标记--清理”算法不同,G1从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的。
可预测的停顿
  • 这是G1相对于CMS的另一个大优势,降低停顿时间是G1 和 CMS 共同的关注点,
  • 但G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段(通过参数"XX:MaxGCPauseMillis"指定)内完成垃圾收集
毫无疑问, 可以由用户指定期望的停顿时间是G1收集器很强大的一个功能, 设置不同的期望停顿时间, 可使得G1在不 同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。 不过, 这里设置的“期望值”必须是符合实际的, 不能异想 天开, 毕竟G1是要冻结用户线程来复制对象的, 这个停顿时 间再怎么低也得有个限度。 它默认的停顿目标为两百毫秒, 一般来说, 回收阶段占到几十到一百甚至接近两百毫秒都很 正常, 但如果我们把停顿时间调得非常低, 譬如设置为二十毫秒, 很可能出现的结果就是 由于停顿目标时间太短, 导 致每次选出来的回收集只占堆内存很小的一部分 收集器收集的速度逐渐跟不上分配器分配的速度, 导致垃圾慢慢堆 积。 很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间, 但应用运行时间一长就不行了, 最终占满堆引发 Full GC反而降低性能, 所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。

G1垃圾收集分类 

YoungGC 
  • YoungGC并不是说现有的Eden区放满了就会马上触发,G1会计算下现在Eden区回收大概要多久时间,如果回收时 间远远小于参数 -XX:MaxGCPauseMills 设定的值那么增加年轻代的region,继续给新对象存放,不会马上做Young GC,直到下一次Eden区放满,G1计算回收时间接近参数 -XX:MaxGCPauseMills 设定的值,那么就会触发Young GC 
MixedGC 
  • 不是FullGC,老年代的堆占有率达到参数(-XX:InitiatingHeapOccupancyPercent)设定的值则触发,回收所有的 Young和部分Old(根据期望的GC停顿时间确定old区垃圾收集的优先顺序)以及大对象区,
  • 正常情况G1的垃圾收集是先做 MixedGC,主要使用复制算法,需要把各个region中存活的对象拷贝到别的region里去,拷贝过程中如果发现没有足够 的空region能够承载拷贝对象就会触发一次Full GC 
Full GC 
  • 停止系统程序,然后采用单线程进行标记、清理和压缩整理,好空闲出来一批Region来供下一次MixedGC使用,这 个过程是非常耗时的。(Shenandoah优化成多线程收集了)

G1垃圾收集器优化建议 

  • 假设参数 -XX:MaxGCPauseMills 设置的值很大,导致系统运行很久,年轻代可能都占用了堆内存的60%了,此时才 触发年轻代gc。 那么存活下来的对象可能就会很多,此时就会导致Survivor区域放不下那么多的对象,就会进入老年代中。 
  • 或者是你年轻代gc过后,存活下来的对象过多,导致进入Survivor区域后触发了动态年龄判定规则,达到了Survivor 区域的50%,也会快速导致一些对象进入老年代中。
  • 所以这里核心还是在于调节 -XX:MaxGCPauseMills 这个参数的值,在保证他的年轻代gc别太频繁的同时,还得考虑 每次gc过后的存活对象有多少,避免存活对象太多快速进入老年代,频繁触发mixed gc.

什么场景适合使用G1

1. 50%以上的堆被存活对象占用
2. 对象分配和晋升的速度变化非常大
3. 垃圾回收时间特别长,超过1秒
4. 8GB以上的堆内存(建议值)
5. 停顿时间是500ms以内

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1501296.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

供应链管理系统(SCM):得供应链得天下不是空话。

2023-08-26 15:51贝格前端工场 Hi,我是贝格前端工场,优化升级各类管理系统的界面和体验,是我们核心业务之一,欢迎老铁们评论点赞互动,有需求可以私信我们 一、供应链对于企业的重要性 供应链对企业经营的重要性不可…

在外包公司搞了2年,出来技术都没了...

先说情况,大专毕业,18年通过校招进入湖南某软件公司,干了接近6年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了2年的的功能…

O2O:Sample Efficient Offline-to-Online Reinforcement Learning

IEEE TKDE 2024 paper Introduction O2O存在策略探索受限以及分布偏移问题,进而导致在线微调阶段样本效率低。文章提出OEMA算法首先使用离线数据训练乐观的探索策略,然后提出基于元学习的优化方法,减少分布偏移并提高O2O的适应过程。 Meth…

Java零基础 - 数组的定义和声明

哈喽,各位小伙伴们,你们好呀,我是喵手。 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。 我是一名后…

React-Redux中actions

一、同步actions 1.概念 说明:在reducers的同步修改方法中添加action对象参数,在调用actionCreater的时候传递参数,数会被传递到action对象payload属性上。 2.reducers对象 说明:声明函数同时接受参数 const counterStorecre…

DDoS和CC攻击的原理

目前最常见的网络攻击方式就是CC攻击和DDoS攻击这两种,很多互联网企业服务器遭到攻击后接入我们德迅云安全高防时会问到,什么是CC攻击,什么又是DDoS攻击,这两个有什么区别的,其实清楚它们的攻击原理,也就知…

mybatis中使用<choose><when><otherwise>标签实现根据条件查询不同sql

项目场景&#xff1a; 有时候业务层未进行条件处理那么在sql怎么操作呢,这里我是将c#版本的代码改成Java版本的时候出现的问题,因为c#没有业务层 更多操作是在sql中实现的 也就是业务层和编写sql地方一起写了,当我按照c#代码改Java到写sql时发现<if>标签不能实现我们业务…

3.8 动态规划 背包问题

一.01背包 46. 携带研究材料&#xff08;第六期模拟笔试&#xff09; (kamacoder.com) 代码随想录 (programmercarl.com) 携带研究材料: 时间限制&#xff1a;5.000S 空间限制&#xff1a;128MB 题目描述: 小明是一位科学家&#xff0c;他需要参加一场重要的国际科学大会…

OpenCascade源码剖析:Handle类

Handle其实就是智能指针的上古版本&#xff0c;了解一点C11的应该对shared_ptr非常熟悉&#xff0c;那么你就把Handle当做shared_ptr来理解就没有任何问题了。 不过OCCT的Handles是侵入式的实现&#xff0c;前面讲过Standard_Transient类提供了引用计数机制&#xff0c;这个就…

新质生产力助春播春管:佳格天地连续第5年上线大数据平台,服务春季生产

随着“惊蛰”节气过去,全国各地陆续掀起春播春管热潮。今年的政府工作报告中指出,2023年我国粮食产量1.39万亿斤,再创新高。2024年要坚持不懈抓好“三农”工作,扎实推进乡村全面振兴,粮食产量预期目标1.3万亿斤以上。 粮食产量预期目标的明确为一年农事生产指引了方向。同时,新…

地址分词 | EXCEL批量进行地址分词,标准化为十一级地址

一 需求 物流需要对用户输入地址进行检查&#xff0c;受用户录入习惯地址可能存在多种问题。 地址标准化是基于地址引擎和地址大数据模型&#xff0c;自动将地址信息标准化为省、市、区市县、街镇、小区、楼栋、单元、楼层、房屋、房间等元素&#xff0c;补充层级缺失数据、构建…

导出谷歌gemma模型为ONNX

参考代码如下&#xff08;从GitHub - luchangli03/export_llama_to_onnx: export llama to onnx修改而来&#xff0c;后面会合入进去&#xff09; 模型权重链接参考&#xff1a; https://huggingface.co/google/gemma-2b-it 可以对modeling_gemma.py进行一些修改(transforme…

LLCC68与SX1278 LoRa模块的优势对比?

LLCC68和SX1278都是Semtech公司推出的LoRa调制解调器模块&#xff0c;属于LoRa模块家族。它们在无线通信领域都有着广泛的应用&#xff0c;但具体的优势会取决于具体的应用场景和需求。下面是对LLCC68和SX1278 LoRa模块的一些优势对比&#xff1a; LLCC68 LoRa模块的优势&#…

qt自定义时间选择控件窗口

效果如图&#xff1a; 布局如图&#xff1a; 参考代码&#xff1a; //DateTimeSelectWidget #ifndef DATETIMESELECTWIDGET_H #define DATETIMESELECTWIDGET_H#include <QWidget> #include <QDateTime>namespace Ui { class DateTimeSelectWidget; }class DateTim…

【手游联运平台搭建】游戏平台的作用

随着科技的不断发展&#xff0c;游戏行业也在不断壮大&#xff0c;而游戏平台作为连接玩家与游戏的桥梁&#xff0c;发挥着越来越重要的作用。游戏平台不仅为玩家提供了便捷的游戏体验&#xff0c;还为游戏开发者提供了广阔的市场和推广渠道。本文将从多个方面探讨游戏平台的作…

扩展CArray类,增加Contain函数

CArray不包含查找类的函数&#xff0c;使用不便。考虑扩展CArray类&#xff0c;增加Contain函数&#xff0c;通过回调函数暴露数组元素的比较方法&#xff0c;由外部定义。该方法相对重载数组元素的“”符号更加灵活&#xff0c;可以根据需要配置不同的回调函数进行比较 //类型…

继深圳后,重庆与鸿蒙展开原生应用开发合作

截至2023年底&#xff0c;开源鸿蒙开源社区已有250多家生态伙伴加入&#xff0c;开源鸿蒙项目捐赠人达35家&#xff0c;通过开源鸿蒙兼容性测评的伙伴达173个&#xff0c;累计落地230余款商用设备&#xff0c;涵盖金融、教育、智能家居、交通、数字政府、工业、医疗等各领域。 …

底层day3作业

思维导图 作业&#xff1a;1.总结任务的调度算法&#xff0c;把实现代码再写一下 算法&#xff1a;抢占式调度时间片轮转 1.抢占式调度&#xff1a;任务优先级高的可以打断任务优先级低的执行&#xff08;适用于不同优先级&#xff09; 2.时间片轮转&#xff1a;每一个任务拥…

react的diff源码

react 的 render 阶段&#xff0c;其中 begin 时会调用 reconcileChildren 函数&#xff0c; reconcileChildren 中做的事情就是 react 知名的 diff 过程 diff 算法介绍 react 的每次更新&#xff0c;都会将新的 ReactElement 内容与旧的 fiber 树作对比&#xff0c;比较出它们…

电脑小问题:Windows更新后黑屏

Windows 更新后黑屏解决方法 在 Windows 更新后&#xff0c;伴随了一个小问题&#xff0c;电脑启动后出现了桌面黑屏。原因可能是火绒把 explorer.exe 当病毒处理了。 下面讲解 Windows 更新后黑屏的解决方法&#xff0c;步骤如下&#xff1a; 1. 按 ctrl alt delete 组合键…