相较于传统的硅MOSFET和硅IGBT 产品,基于宽禁带碳化硅材料设计的碳化硅 MOSFET 具有耐压高、导通电阻低,开关损耗小的特点,可降低器件损耗、减小产品尺寸,从而提升系统效率。而在实际应用中,我们发现:带辅助源极管脚的TO-247-4封装更适合于碳化硅MOSFET这种新型的高频器件,它可以进一步降低器件的开关损耗,也更有利于分立器件的驱动设计。
引入了辅助源极管脚成为TO-247-4封装的碳化硅MOSFET,避免了驱动回路和功率回路共用源极线路,实现了这两个回路的解耦。同时,TO-247-4封装的开关器件由于没有来自功率源极造成的栅极电压衰减,使得碳化硅MOSFET(TO-247-4封装)的开关速度会比TO-247-3封装的更快,开关损耗更小。这种封装多了一个额外的发射极引脚,称为开尔文发射极,专门用于驱动回路。
通过开尔文发射极管脚配置,即使仍然使用相同的续流二极管,开关速度可以进一步提高,IGBT和二极管的损耗都会减少。因此采用TO-247 4pin增加了整个系统的效率,从而降低IGBT器件工作结温。在标准的通孔封装中,例如TO-220或TO-247,每个引线管脚都有寄生电感。特别是来自发射极引脚的电感,它是功率和控制回路的共同部分。
如下图所示,功率环路还包括来自集电极引脚的寄生电感,以及连接开关器件和直流电容的PCB走线中的电感。栅极回路包括来自栅极引脚,和连接栅极和发射极焊盘与栅极电阻和栅极驱动器的PCB走线的电感。
在开通和关断过程中,发射极引线电感对有效栅极到发射极电压的影响可分别量化为:
由公式(1)和(2)可以推断出,有效栅极到发射极的电压在开通和关断的瞬时条件下都会被削弱。
在接通和关断的瞬时,有效栅极到发射极的电压被衰减。由于这种衰减,换向时间被延长,导致了更高的开关损耗。
TO-247 4pin封装有一个额外的管脚连接到IGBT的发射极,在图中标为E2。该管脚用于连接栅极驱动器,也被称为开尔文发射极,这个引脚不受来自功率回路的电压衰减影响,来自IGBT集电极的电流完全由功率发射器引线E1传导。
TO-247 4pin封装的另一个特点是引脚输出排布,它与标准的TO-247-3不同,这样做是为了保持高压引脚之间的爬电距离。此外,连接到功率回路的引脚C和E1被并排放置,控制回路E2和G的引脚也是相邻。
开尔文发射极配置的优势在大电流下,这时电流变化率最高。因而,在3pin封装中,引线电感将使栅极电压衰减最大。因此,在电流高于IGBT的额定电流的应用中,开关损耗的减少可以高于20%。
引入了辅助源极管脚成为TO-247-4封装的碳化硅MOSFET,避免了驱动回路和功率回路共用源极线路,实现了这两个回路的解耦。同时,TO-247-4封装的开关器件由于没有来自功率源极造成的栅极电压衰减,使得碳化硅MOSFET(TO-247-4封装)的开关速度会比TO-247-3封装的更快,开关损耗更小。
因此,当您在使用碳化硅MOSFET进行新方案设计时,为进一步减小碳化硅MOSFET器件的开关损耗以及便于驱动回路的布局设计,建议选择TO-247-4封装的碳化硅MOSFET产品。
登录大大通,了解更多详情,解锁1500+完整应用方案,更有大联大700+FAE在线答疑解惑!