【C++从0到王者】第五十二站:跳表

news2024/11/17 1:35:02

文章目录

  • 一、什么是跳表
  • 二、skiplist的效率
  • 三、skiplist的实现

一、什么是跳表

skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为key或者key/value的查找模型。

skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。如果是一个有序的链表,查找数据的时间复杂度是O(N)。

William Pugh开始的优化思路:

  1. 假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图b所示。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半。

  2. 以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图c,这样搜索效率就进一步提高了。

  3. skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似二分查找,使得查找的时间复杂度可以降低到O(log n)。但是这个结构在插入删除数据的时候有很大的问题,插入或者删除一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。

image-20240227123323106

  1. skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了。细节过程入下图:

image-20240227123351614

比如在下图的第三个跳表中,如果我们想要查找19的话是这样进行的

  1. 比9大,向右走,跳跃到9
  2. 比21小,向下走
  3. 比17大,向右走,跳跃到17
  4. 比21小,向下走
  5. 根19相等,找到了

image-20240227123857031

如果我们采用每个节点的高度是随机的,那么这样的话,每个节点插入和删除就跟其他节点没有关系了,都是独立的,不需要调整其他节点的层数了

image-20240227124030959

二、skiplist的效率

这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:

image-20240227124121898

在Redis的skiplist实现中,这两个参数的取值为:

p = 1/4
maxLevel = 32

根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。定量的分析
如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。

  • 节点层数恰好等于1的概率为1-p。

  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。

  • 节点层数大于等于3的概率为p2,而节点层数恰好等于3的概率为p2*(1-p)。

  • 节点层数大于等于4的概率为p3,而节点层数恰好等于4的概率为p3*(1-p)。
    ……

  • 因此,一个节点的平均层数(也即包含的平均指针数目),计算如下

image-20240227124314213

  • 现在很容易计算出:

  • 当p=1/2时,每个节点所包含的平均指针数目为2;

  • 当p=1/4时,每个节点所包含的平均指针数目为1.33。

  • 跳表的平均时间复杂度为O(logN)

三、skiplist的实现

这里我们使用这道题目来进行实现

跳表

我们的完整代码为

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
#include <vector>
#include <time.h>
using namespace std;
struct SkiplistNode //跳表节点
{
    int _val;       //该节点所存储的值
    vector<SkiplistNode*> _nextV; //表明该节点所指向的下面的节点的指针。因为跳表会有多个指针,这个数量是不确定的,所以我们使用一个vector
    SkiplistNode(int val, int level) //一个跳表节点被创建出来以后,需要它的值和该节点的层数,这是它最关键的两个信息
        :_val(val)
        , _nextV(level, nullptr) //这里姑且先将新开的一个跳表节点的所有指针全部置空,后序在进行处理
    {}
};
class Skiplist {
    typedef SkiplistNode Node;
public:
    Skiplist() {
        srand(time(nullptr)); //因为跳表节点的层数是随机的,所以我们一定会用到rand函数,所以就要生成随机数种子,而它只需要调用一次,所以我们不妨直接在构造函数里面去调用
        //头节点,层数是1
        _head = new SkiplistNode(-1, 1); //当我们的跳表生成以后,我们让跳表姑且只有一个节点,并且这个节点不存储任何有效值,且其层数为1
    }
    //查找一个目标值是否在跳表中,如果存在,则返回true
    bool search(int target) {
        Node* cur = _head; //从头节点开始一直往下去遍历
        int level = _head->_nextV.size() - 1; //head的最高层数,其实也就是我们整个跳表的最高层数已经被确定了
        //因为寻找逻辑是向右和像下去跑的。如果向右去跑,一定是target太大了导致的,这时候一定会导致的是最终cur->_nextV[level]为nullptr。
        //此时跟据我们内部的逻辑也会向下走。最终level一定会降低到-1,此时就是没有找到了
        //如果原来的值太小,那么一定是一直往下跳,最终level也会降低到-1
        while (level >= 0)  
        {
            //cur的第level层所指向的那个结点的val小于目标结点
            //注意,这里cur的第level层可能指向空,但是右边可能还有结点,所以我们也需要让它向下移动
            if (cur->_nextV[level] && cur->_nextV[level]->_val < target)
            {
                //直接跳到这个结点去,即向右跳
                cur = cur->_nextV[level];
            }
            //如果大于
            else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target)
            {
                //向下跳
                level--;
            }
            else
            {
                return true;
            }
        }
        return false;
    }

    //这个函数的功能是,寻找指向num节点的所有指针。即前面的指向它的节点我们都会通过这个函数最终找到,返回一个vector,这个vector就是按照层去排好的
    vector<Node*> FindPrevNode(int num)
    {
        //需要知道插入位置每一层的前一个结点指针。
        Node* cur = _head;
        int level = _head->_nextV.size() - 1; //先算出当前最大层数
        //我们要将每一层的前一个节点指针放入prevV中,注意level这个其实是下标,我们这里要是个数,所以要+1,并且它的初始时刻一定为_head。
        //prevV的数量为_head的层数的原因是,_head一定是当前跳表中层数最大的节点之一,即便后序num的比_head的的层数要高,我们后序可以通过resize去再次拔高_head
        //而初始时刻设置为_head的原因是,任何一个节点,如果它的层数
        //如果它和_head之间某一层没有相隔的节点,那么它此时的该层的上一个节点就是_head,而我们并不知道我们要找的num有几层(因为还没有定下来),所以我们可以直接将全部值设置为_head
        //然后如果它的prevV[level]不是_head了,那么直接覆盖即可。
        vector<Node*> prevV(level + 1, _head);
        //num存在的位置一定是要比cur的后面节点小于等于,但是又比cur节点处的位置大的值。
        while (level >= 0)
        {
            //目标值比下一个节点值要大,向右走
            if (cur->_nextV[level] && cur->_nextV[level]->_val < num)
            {
                //cur向右走
                cur = cur->_nextV[level];
            }
            //比num小于等于cur处,就可以更新它的前一个节点了,就是cur,然后我们这一层就找好了,去找下一层了。
            else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num)
            {
                //更新前一个结点    
                //如果等于nullptr,那么其实该处已经映射到头了,只要num是够高的,那么该节点就是指向num的。对于num小于等于,也是一样的道理。说明num就存在于该处
                //他的节点一定不会收到后面的影响了。所以只需要将前面所有节点的投影给拿出来即可
                prevV[level] = cur; 

                level--;
            }
        }
        return prevV;
    }

    void add(int num) 
    {
        //num将要插入位置的每一层的上一个节点指针数组
        vector<Node*> prevV = FindPrevNode(num);

        int n = RandomLevel(); //随机生成一个层数
        Node* newnode = new Node(num, n); //创建好新的跳表节点
        if (n > _head->_nextV.size())//如果新的层数已经超出了原有的层数,那么_head需要拔高,且prevV里面的数据也要拔高
        {
            _head->_nextV.resize(n, nullptr);
            prevV.resize(n, _head);
        }
        //连接前后节点
        for (int i = 0; i < n; i++)
        {
            newnode->_nextV[i] = prevV[i]->_nextV[i];
            prevV[i]->_nextV[i] = newnode;
        }
    }

    bool erase(int num) 
    {
        //找到num对应的上一个节点指针数组
        vector<Node*> prevV = FindPrevNode(num);
        //最底层的下一个不是val,没有这个节点
        if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)
        {
            return false;
        }
        else
        {
            //要删除的节点就是最底层的节点指向的下一个节点
            Node* del = prevV[0]->_nextV[0];
            //del每一层的前后指针进行连接
            for (size_t i = 0; i < del->_nextV.size(); i++)
            {
                prevV[i]->_nextV[i] = del->_nextV[i];
            }
            delete del;
            
            //如果删除了最高层的节点,降低一下头节点的层数
            int i = _head->_nextV.size() - 1;
            while (i > 0) //注意,起码要给这个节点留上一层。
            {
                if (_head->_nextV[i] == nullptr)
                {
                    --i; //寻找_head的高度
                }
                else
                {
                    break;
                }
            }
            _head->_nextV.resize(i + 1); //降低_head的高度

            return true;
        }
    }
    //通过概率去控制层数的函数
    int RandomLevel()
    {
        size_t level = 1;
        while (rand() < RAND_MAX * _p && level < _maxLevel)
        {
            ++level;
        }
        return level;
    }


    //方便我们去观察跳表,去打印跳表
    void Print()
    {
        //int level = _head->_nextV.size();
        //for (int i = level - 1; i >= 0; i--)
        //{
        //    Node* cur = _head;
        //    while (cur)
        //    {
        //        printf("%d->", cur->_val);
        //        cur = cur->_nextV[i];
        //    }
        //    cout << endl;
        //}
        Node* cur = _head;
        while (cur)
        {
            for (auto e : cur->_nextV)
            {
                printf("%2d", cur->_val);
            }
            cout << endl;
            // 打印每个每个cur节点
            for (auto e : cur->_nextV)
            {
                printf("%2s", "↓");
            }
            printf("\n");

            cur = cur->_nextV[0];
        }



    }
private:
    Node* _head; //跳表的第一个节点指针,即头节点,不存储有效数据
    size_t _maxLevel = 32; //最高的层数
    double _p = 0.5; //一层的概率
};

int main()
{
    Skiplist sl;
    sl.Print();
    cout << "-------------------" << endl;

    int a[] = { 5,2,3,8,9,6 };
    for (auto e : a)
    {
        sl.add(e);
        sl.Print();
        cout << "-------------------" << endl;
    }
    for (auto e : a)
    {
        sl.erase(e);
        sl.Print();
        cout << "-------------------" << endl;
    }

    return 0;
}


/**
 * Your Skiplist object will be instantiated and called as such:
 * Skiplist* obj = new Skiplist();
 * bool param_1 = obj->search(target);
 * obj->add(num);
 * bool param_3 = obj->erase(num);
 */
//int main()
//{
//    Skiplist sl;
//    int max = 0;
//    for (size_t i = 0; i < 1000000000; i++)
//    {
//        int r = sl.RandomLevel();
//        if (max < r)
//        {
//            max = r;
//        }
//    }
//    cout << max << endl;
//    
//	return 0;
//}

在力扣上是可以通过测试用例的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1499595.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【PCIe】 PCIe 拓扑结构与分层结构

&#x1f525;博客主页&#xff1a;PannLZ 文章目录 PCIe拓扑结构PCIe分层结构 PCIe拓扑结构 计算机网络中的拓扑结构源于拓扑学(研究与大小、形状无关的点、线关系的方法)。 把网络中的计算机和通信设备抽象为一个点&#xff0c;把传输介质抽象为一条线&#xff0c;由点和线组…

HTTP请求响应详解 (HTTP请求数据格式,常见请求方式,后端响应参数)及Apifox(postman)使用方式

目录 一.HTTP协议 二.HTTP请求数据格式 请求方式 三.后端响应请求 基于SpringBoot响应数据 请求响应的参数类型 同一响应格式 四.Apifox(postman)使用方法 一.HTTP协议 HTTP&#xff08;Hypertext Transfer Protocol&#xff0c;超文本传输协议&#xff09;是一种用…

maven项目引入私有jar,并打包到java.jar中

私有jar存放位置 maven依赖 <dependency><groupId>com.hikvision.ga</groupId><artifactId>artemis-http-client</artifactId><version>1.1.10</version><scope>system</scope><systemPath>${project.basedir}/s…

JS实现chatgpt数据流式回复效果

最近高了一个简单chatgpt对话功功能&#xff0c;回复时希望流式回复&#xff0c;而不是直接显示结果&#xff0c;其实很简单&#xff0c;前端流式读取即可&#xff0c;后端SSE实现流式传输 前端用到fetch获取数据&#xff0c;然后利用reader读取 let requestId parseInt(Ma…

笛量智能加入飞桨技术伙伴计划,共同打造“AI+私域智慧运营”新模式

近日&#xff0c;上海笛量智能科技有限公司正式加入飞桨技术伙伴计划&#xff0c;双方将共同努力在私域运营机器人技术及生态建设做出贡献&#xff0c;致力打造“AI私域运营”智能化新模式&#xff0c;助力产业降本增效。 上海笛量智能科技有限公司 上海笛量智能科技有限公司&a…

6款ai写作一键生成,让你的文字脱颖而出

如今AI写作工具正逐渐走入我们的生活&#xff0c;成为我们写作的得力助手&#xff0c;它们通过分析大量的文本数据和机器学习算法&#xff0c;能够快速生成文章的大纲、段落结构等&#xff0c;从而帮助我们节省写作时间&#xff0c;提高写作效率。今天&#xff0c;我将为大家介…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《考虑净负荷均衡的分布式光伏集群电压调控策略研究》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

Vue时间轴

之前有这样子的需求没有用第三方插件于是自己写一个简单的时间轴 时间轴滚动条并左右切换滚动条位置相对应移动 <div class"time-scrollbar"><div v-if"timeLineData.length>0" class"scrollbar-content"><div class"ar…

NextJs教程系列(四):路由loading

loading加载 loading.js 可以帮助你使用React Suspense创建一个组件, 当你在加载路由内容时&#xff0c;它会显示该加载状态组件&#xff0c;渲染完成后&#xff0c;新的内容将会自动替换。 传统ssr渲染流程 传统的ssr渲染流程&#xff0c;当用户请求一个页面时&#xff0c;服…

入门学习Python推荐书籍

. Python作为一门易学易用的编程语言&#xff0c;在近些年得到了越来越多的关注和应用。Python的开发效率极高&#xff0c;语言特性丰富&#xff0c;拓展性强。因此&#xff0c;Python成为了众多IT工程师、科研人员、数据分析师以及爱好者的首选。 那么&#xff0c;对于初学者…

led护眼灯真的能护眼吗?五大热门护眼台灯测评,不容错过!

如今&#xff0c;儿童近视率不断攀升&#xff0c;其中用眼过度疲劳已成为近视的主要诱因。学习环境中光线的适宜与否&#xff0c;直接关乎孩子眼睛的疲劳程度。因此&#xff0c;为孩子营造一个舒适、健康的学习环境显得尤为关键。而一款优质的护眼台灯&#xff0c;正是预防近视…

Hive-源码带你看hive命令背后都做了什么

一、源码下载 下面是hive官方源码下载地址&#xff0c;我下载的是hive-3.1.3&#xff0c;那就一起来看下吧 https://dlcdn.apache.org/hive/hive-3.1.3/apache-hive-3.1.3-src.tar.gz 二、总结 由于篇幅太长担心占用你的时间&#xff0c;先把总结写到前面。 1、命令行输入 …

【Linux】软件管理器yum和编辑器vim

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 文章目录 一、Linux下安装软件的方案1.1 源代码安装1.2 rpm安装1.3 yum安装 二、Linux软件…

备战2024年汉字小达人活动:历年区级样题练习和解析

今天我们来看一下汉字小达人活动的第一轮选拔的区级样题。区级样题是中文自修杂志社&#xff08;主办方&#xff09;发布的试题&#xff0c;主要是给学校老师选拔参考使用的&#xff0c;据了解&#xff0c;很多学校老师是直接用这个样卷在学校组织选拔&#xff0c;选拔成绩突出…

虚拟主播视频制作,低成本的数字人播报方案

传统的视频制作方式往往面临着成本高、周期长、人力投入大等挑战。为了满足企业对于高效、低成本视频制作的需求&#xff0c;美摄科技凭借其强大的技术研发实力&#xff0c;推出了面向企业的虚拟主播视频解决方案&#xff0c;为企业带来了全新的数字人播报视频制作体验。 美摄…

SVG 渐变边框在 CSS 中的应用

SVG 渐变边框在 CSS 中的应用 <template><div class"home"><div class"one"><svg width"100%" height"100%"><rect x"2" y"2" width"100%" height"100%" fill&q…

『 Linux 』Process Control进程控制(万字)

文章目录 &#x1f996; 前言&#x1f996; fork()函数调用失败原因&#x1f996; 进程终止&#x1f4a5; 进程退出码&#x1f4a5; 进程正常退出 &#x1f996; 进程等待&#x1f4a5; 僵尸进程&#x1f4a5; 如何解决僵尸进程的内存泄漏问题&#x1f4a5; wait( )/waitpid( )…

单链表的实现(数据结构)

本篇博客主要是单链表&#xff08;无头单项不循环&#xff09;的实现的代码分享 说明&#xff1a;因为此单链表无头&#xff08;哨兵位&#xff09;&#xff0c;可以说成没有初始化也可以说初始化时没有一个有效地址作为单链表的起始地址 例如下面代码中的plist NULL。 所以在…

MS5188N——16bit、8 通道、500kSPS、 SAR 型 ADC

产品简述 MS5188N 是 8 通道、 16bit 、电荷再分配逐次逼近型模数 转换器&#xff0c;采用单电源供电。 MS5188N 拥有多通道、低功耗数据采集系统所需的所有 组成部分&#xff0c;包括&#xff1a;无失码的真 16 位 SAR ADC &#xff1b;用于将输入配 置为单端输入…

开源爬虫技术在金融行业市场分析中的应用与实战解析

一、项目介绍 在当今信息技术飞速发展的时代&#xff0c;数据已成为企业最宝贵的资产之一。特别是在${industry}领域&#xff0c;海量数据的获取和分析对于企业洞察市场趋势、优化产品和服务至关重要。在这样的背景下&#xff0c;爬虫技术应运而生&#xff0c;它能够高效地从互…