1.5 简述转置卷积的主要思想以及应用场景

news2024/12/29 9:02:32

1.5 简述转置卷积的主要思想以及应用场景

普通的卷积主要思想

普通的卷积操作可以形式化为一个矩阵乘法运算,即y=Ax(1-12)

其中,x和y分别是卷积的输入和输出(展平成一维向量形式),维度分别为d⁽i⁾和d⁽⁰⁾;A是由卷积核、滑动步长决定的常对角矩阵,维度为其每一行对应着卷积核的一次滑动位置。以一维卷积为例,假设输入向量
x = [ a , b , c , d , e , f , g ] T x=[a,b,c,d,e,f,g]^T x=[a,b,c,d,e,f,g]T
卷积核为K=[x,y,z],卷积的滑动步长为2,则输出向量为

在这里插入图片描述

转置卷积主要思想:

反过来,记 A T A^T AT为矩阵A的转置,定义如下矩阵运算:

y^= A T A ^T AT x x x^(1-14)

其所对应的操作被称为转置卷积,x^ 和 y^ 分别是转置卷积的输入和输出,维度分别为d⁽⁰⁾和d(i)。

转置卷积也被称为反卷积(deconvolution),它可以看作是普通卷积的一个“对称”操作,这种“对称性”体现在以下两个方面。

  • 转置卷积能将普通卷积中输入到输出的尺寸变换逆反过来

    例如,式(1-12)中的普通卷积将特征图尺寸由d(1)变为d(1),而式(1-14)中的转置卷积则可以将特征图尺寸由d(0)复原为d(1)。这里需要注意的是,输入特征图经过普通卷积操作后再经过转置卷积,只是复原了形状,并不能复原具体的取值(因此将转置卷积称为反卷积并不是很合适)。

  • 根据矩阵运算的求导知识,在式(1-12)所示的普通卷积中,输出y对于输入x的导数为

  • 在这里插入图片描述

    而在式(1-14)所示的转置卷积中,输出y^ 对于输入x^ 的导数为
    在这里插入图片描述

    由此可以看出,转置卷积的信息正向传播与普通卷积的误差反向传播所用的矩阵相同,反之亦然

    以式(1-14)为例,我们可以写出转置卷积的具体计算公式:

    在这里插入图片描述

可以看到,等号的右侧实际上就是一个普通卷积对应的矩阵乘法。

因此,转置卷积本质上就是一个对输入数据进行适当变换(补零/上采样)的普通卷积操作

具体实现时,以二维卷积为例,一个卷积核尺寸为Kw×Kh,滑动步长为(Sw,Sh)、边界填充尺寸为(pw,ph)的普通卷积,其所对应的转置卷积可以按如下步骤来进行。

  1. 对输入特征图进行扩张(上采样):相邻的数据点之间,在水平方向上填充Sw-1个零,在垂直方向上填充Sn-1个零。

  2. 对输入特征图进行边界填充:左右两侧分别填充在这里插入图片描述个零列,上下两侧分别填充在这里插入图片描述个零行。

  3. 在变换后的输入特征图上做卷积核大小为、滑动步长为(1,1)的普通卷积操作。

    在上述步骤2中,转置卷积的边界填充尺寸(pw^, pn^)是根据与之对应的普通卷积的边界填充尺寸(pw,pn)来确定的,很多深度学习框架(如PyTorch)就是按照这个思路来设定转置卷积的边界填充尺寸。

    但在有些计算框架(如TensorFlow)中,做卷积时无法显式指定边界填充尺寸,只能选择一些预定义的填充模式(如padding=same或padding=valid),此时,转置卷积的边界填充尺寸是根据与之对应的普通卷积的边界填充模式来设定的。

    需要注意的是,当滑动步长大于1时,卷积的输出尺寸公式中含有向下取整操作,故而普通卷积层的输入尺寸与输出尺寸是多对一关系,此时转置卷积无法完全恢复之前普通卷积的输入尺寸,需要通过一个额外的参数来直接或间接地指定之前的输入尺寸,(如TensorFlow中的output_shape参数、PyTorch中的output_padding参数)。

应用场景:

普通卷积和转置卷积所处理的基本任务是不同的。前者主要用来做特征提取,倾向于压缩特征图尺寸

转置卷积主要用于对特征图进行扩张或上采样,代表性的应用场景如下。

  • 语义分割/实例分割等任务:由于需要提取输入图像的高层语义信息,网络的特征图尺寸一般会先缩小,进行聚合;此外,这类任务一般需要输出与原始图像大小一致的像素级分割结果,因而需要扩张前面得到的具有较高语义信息的特征图,这就用到了转置卷积。
  • 一些物体检测、关键点检测任务,需要输出与源图像大小一致的热图。
  • 图像的自编码器、变分自编码器、生成式对抗网络等。

参考文献:

《百面深度学习》 诸葛越 江云胜主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-53097-4

2020年7月第1版(2020年7月北京第二次印刷)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1498308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机设计大赛 深度学习花卉识别 - python 机器视觉 opencv

文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &a…

[网络安全] PKI

一、PKI 概述 名称; 公钥基础设施 (Public Key Facility) 作用: 通过加密技术和数字签名保证信息安全 组成: 公钥机密技术、数字证书、CA、RA 二、信息安全三要素 机密性:确保仅信息发收双方 能看懂信息 完整性: 确保信息发收完整,不被破坏 …

阿珊带你深入理解 async/await 函数

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【RabbitMQ】WorkQueue

📝个人主页:五敷有你 🔥系列专栏:MQ ⛺️稳中求进,晒太阳 Work Queues Work queues任务模型,简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息 当消息处理比较耗时的时候&…

仿牛客网项目---消息队列的实现

本篇文章讲一讲我们的项目中用到的消息队列。 1.阻塞队列 2.kafka 我的项目为什么要用消息队列? 如果采用消息队列,那么评论、点赞、关注三类不同的事,可以定义三类不同的主题(评论、点赞、关注),发生相应…

基于cnn卷积神经网络的车辆颜色检测识别-图像去雾-图像去雨(改进yolo目标检测-附代码)

– 引言: 开篇简述图像处理在智能交通监控、自动驾驶等领域的关键作用,并强调随着深度学习尤其是卷积神经网络(CNN)的发展,在复杂环境下的车辆颜色精确识别、图像恢复(如去雾和去雨)等难题得以…

基于毕奥-萨伐尔定律的交流电机的4极旋转磁场matlab模拟与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于毕奥-萨伐尔定律的交流电机的4极旋转磁场,对比不同定子半径,对比2级旋转磁场。 2.系统仿真结果 3.核心程序与模型 版本:MATLAB2022a…

程序异常结束退出 无输出 无显式报错日志 爆栈

需求 开一个很大的数组&#xff08;300万&#xff09; ❗ 错误示例 #include <stdio.h>int main() {int size 3000000;int a[size];a[size-1] 999;printf("%d",a[size-1]);return 0; }&#x1f60b; 解决方案 局部变量存储在栈空间 &#xff08;较小&…

国家积极推进长城国家文化公园建设

长城脚下&#xff0c;文化绽放——国家积极推进长城国家文化公园建设 在中华大地的北方&#xff0c;横亘着一条巨龙&#xff0c;它见证着中华民族的沧桑岁月&#xff0c;承载着我们的民族记忆&#xff0c;它就是——长城。这座千年的雄关&#xff0c;不仅是中国的象征&#xf…

【漏洞复现】-用友CRM系统存在逻辑漏洞直接登录后台

免责声明&#xff1a; 本文内容为学习笔记分享&#xff0c;仅供技术学习参考&#xff0c;请勿用作违法用途&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。任何个人和组织利用此文所提供的信息而造成的直接或间接后果和损失&#xff0c;…

CentOS网络故障排查秘笈:实战指南

前言 作为一名热爱折腾 Linux 的技术达人&#xff0c;我深知网络故障会让人抓狂&#xff01;在这篇文章里&#xff0c;我和你分享了我的心得体会&#xff0c;从如何分析问题、识别瓶颈&#xff0c;到利用各种神器解决网络难题。不管你是新手小白还是老鸟大神&#xff0c;这里都…

opengl 学习(二)-----你好,三角形

你好&#xff0c;三角形 分类demo效果解析 分类 opengl c demo #include "glad/glad.h" #include "glfw3.h" #include <iostream> #include <cmath> #include <vector>using namespace std;/** * 在学习此节之前&#xff0c;建议将这…

javascript操作BOM的方法

目录 1.window.alert() 2.window.confirm() 3.window.prompt() 4.window.location() 5.window.navigator() 6.window.screen() 7.window.history() 8.window.setTimeout() 和 window.clearTimeout() 9.window.setInterval() 和 window.clearInterval() BOM&#xff08…

基类指针指向派生类对象,基类不带虚函数,子类带虚函数产生的异常分析

基类指针指向派生类对象&#xff0c;基类不带虚函数&#xff0c;子类带虚函数产生的异常分析 基类指针指向派生类对象&#xff0c;指针的起始地址一定是指向基类起始地址的 这种情况下&#xff0c;当基类没有虚函数&#xff0c;而子类存在虚函数时&#xff0c;就会出现问题&am…

宠物空气净化器值得不值得买?各品牌宠物空气净化器怎么选?

随着越来越多的家庭选择养宠物&#xff0c;我们也面临着宠物环境卫生和家庭生活舒适度的问题。根据一项调查显示&#xff0c;有70%的养猫家庭中的铲屎官曾经遭受过猫藓或猫毛过敏、鼻炎等问题的困扰。尤其是对于家中有老人、小孩和孕妇等免疫力较低的人来说&#xff0c;他们的抵…

Web自动化测试—webdriver的环境配置

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

计算机基础专升本笔记十四-计算机网络基础(一)

计算机基础专升本笔记十四-计算机网络基础&#xff08;一&#xff09; 一、计算机网络的发展历程 第一代计算机网络&#xff08;数据通信&#xff09; 以数据通信为主的第一代计算机网络。主要是指美国军方用于防控系统的一种联机系统。它只是计算机网络的雏形。 第二代计算…

代码随想录算法训练营第三十九天|动态规划|62.不同路径、63. 不同路径 II

62.不同路径 文章 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&…

用户角色的重要性:确保财务数据安全的最佳方式

在企业的财务管理业务中&#xff0c;一个人几乎不可能完成所有的财务记账任务&#xff0c;例如设定预算、发票审批等等&#xff0c;至少不能有效地执行。最为明智的方式&#xff0c;是将这些任务分派给特定的人员&#xff0c;比如部门经理、财务经理或者销售、市场人员等等。 但…

后量子时代,未来密码该何去何从?

古有飞鸽&#xff0c;现有网络&#xff0c;在知识经济为基础的信息化社会中&#xff0c;保障网络信息安全无疑成为成为国与国之间无形的较量。小到个人通讯&#xff0c;大到机要信息传输&#xff0c;信息安全对于国家安全和经济活动正常运转至关重要。密码学作为保障网络与信息…