GEE代码条带问题——sentinel-1接缝处理的问题

news2025/1/11 7:43:34

问题

我有兴趣确定 NDVI 损失最大的年份。我创建了一个函数来收集所有陆地卫星图像并应用预处理。当我导出结果以识别 NDVI 损失最大年份时,生成的数据产品与陆地卫星场景足迹有可怕的接缝线。造成这种情况的原因是什么以及如何调整代码?

sentinel1数据影像拼接产生的条带问题的主要原因有以下几点:

1. 数据采集模式:sentinel1卫星采用合成孔径雷达(SAR)技术进行数据采集,其数据采集模式包括Stripmap、Interferometric Wide Swath(IW)和Extra Wide Swath(EW)等,这些不同的模式下数据的采集方式和分辨率不同,可能导致拼接后出现条带问题。

2. 不同轨道数据拼接:sentinel1卫星的数据采集是通过不同的轨道进行的,不同轨道之间可能存在位置偏差和分辨率差异,当将这些数据拼接在一起时,由于数据之间的差异会导致条带问题的出现。

3. 数据预处理:在数据拼接之前,需要进行预处理操作,如辐射校正、大气校正、地形校正等,但不同数据之间预处理时所采用的方法和参数可能不同,这也会导致拼接后的数据出现条带问题。

4. 大气湿度和地形的影响:sentinel1卫星的雷达信号受大气湿度和地形的影响较大,不同区域和不同时间的大气湿度和地形情况可能存在差异,当将这些数据拼接在一起时,可能会导致条带问题的出现。

综上所述,sentinel1数据影像拼接产生的条带问题的主要原因包括数据采集模式、不同轨道数据拼接、数据预处理和大气湿度、地形等因素的影响。

代码:


var countries = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017"),
    studyArea = ee.FeatureCollection("projects/mangrovescience/SDG_Ghana/Gold_Mining/StudyAreaSubset"),
    minesYear = ee.Image("projects/mangrovescience/SDG_Ghana/Gold_Mining/Ghana_MinesRF_30m_MaxYear3YrAvg2019Full");
//=====================================================================================================================
//                                        MIT - NASA - University of Maryland (ESSIC)
// Remote Sensing of Land Cover and Ecosystems: Country-level Ecosystem Extent and Change Mapping in Sub-Saharan Africa
//                                                  
// Project: Small-scale Gold Mining in Ghana 
// Code: Ghana NDVI Anomaly Timeline
// Written by: Amanda Payton, NASA Goddard 
// Edited by: Abigail Barenblitt NASA Goddard and University of Maryland 
// Co-authors: Daniel Wood, MIT; Lola Fatoyinbo, NASA Goddard; David Lagomasino, East Carolina University
// Objective: This code identifies the year of highest NDVI decrease per pixel, 
//            creates an image to display the year, exports the image, and calculates the area per year.

//=====================================================================================================================


//=======================================================================================
//STEP 1: Create a collection of Landsat Images 
//=======================================================================================

//import the random forest classification of mines from script one
var rf_classification = ee.Image('projects/ee-pbaltezar91/assets/GHA2023_ASSETS/5_Ghana_classRF_30m2VarSplit_30Trees2010-01-01_2023-12-30')
var maxYrDeriv = ee.Image('projects/ee-pbaltezar91/assets/GHA2023_ASSETS/7_GHA_MinesRF_30m_Max3YrAvg_2000_2023')
Map.addLayer(maxYrDeriv)
Map.addLayer(rf_classification)

//=======================================================================================
//STEP 1: Create a collection of Landsat Images 
//=======================================================================================
//This will assemble Landsat imagery from 2002-2023 and harmonize imagery from
//Landsat 5,7, & 8

//Define region of interest 
//--------------------------
//var assetId = 'projects/ee-pbaltezar91/assets/GHA2023_ASSETS/'//Edit to your local folder
var region = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017").filterMetadata("country_na","equals","Ghana"); //country border of Ghana
var countryCode = 'GHA'
var bounds = region.geometry().bounds()
Map.addLayer(bounds,null, 'Study Area Bounds')
Map.centerObject(bounds,10)
// Define years and dates to include in landsat image collection
//---------------------------------------------------------------
var startYear = 2002;         //what year do you want to start the time series 
var endYear   = 2023;         //what year do you want to end the time series
var startJulian  = 0;      //what is the beginning of date filter | DOY
var endJulian    = 153;      //what is the end of date filter | DOY

var crs = 'EPSG:4326'//WGS 84 UTM zone 30 N, between 6°W and 0°W, northern hemisphere between equator and 84°N, onshore and offshore.
var cloud = 50

// Visualize Landsat Observation Image
var obsstart = '2010-01-01'; //date to start observation period
var obsend = '2023-12-30'; //date to end observation period

//#####################################
// Function to mask clouds
// Assumes the image is a Landsat C2 image
function maskClouds(image) {
  // Bits 3 and 4 are cloud and cloud shadow, respectively.
  var cloudsBitMask = (1 << 3);
  var cloudShadowBitMask = (1 << 4);
  // Get the pixel QA band.
  var qa = image.select('QA_PIXEL');
  // Both flags should be set to zero, indicating clear conditions.
  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0)
                 .and(qa.bitwiseAnd(cloudsBitMask).eq(0));
  return image.updateMask(mask);
}
//#####################################
// Functions to apply scaling factors for C2 imagery
function applyScaleFactors_L8(image) {
  var opticalBands = image.select('SR_B.*').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0).float();
  return image.addBands(opticalBands, null, true)
              .addBands(thermalBands, null, true);}
function applyScaleFactors_L7L5(image) {
  var opticalBands = image.select('SR_B.*').multiply(0.0000275).add(-0.2);
  var thermalBand = image.select('^ST_B.*').multiply(0.00341802).add(149.0).float();
  return image.addBands(opticalBands, null, true)
              .addBands(thermalBand, null, true);}
//#####################################
//Function for acquiring Landsat SR image collection
function getLandsatImageCollection(studyArea,startDate,endDate,startJulian,endJulian,cloud){
  var ls;var l5SR;var l7SR;var l8SR;var l9SR;var out;
  
  var sensorBandDictLandsatSR =ee.Dictionary({L9: ee.List([1,2,3,4,5,6,8,17,18]),
                        L8 : ee.List([1,2,3,4,5,6,8,17,18]),
                        L7 : ee.List([0,1,2,3,4,5,8,17,18]),
                        L5 : ee.List([0,1,2,3,4,5,8,17,18])
  });
  var bandNamesLandsatSR = ee.List(['SR_B1','SR_B2','SR_B3','SR_B4','SR_B5','SR_B6','ST_B10','QA_PIXEL', 'QA_RADSAT']);
  
  l5SR = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L5'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L7L5);
  
  l7SR = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L7'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L7L5);

  l8SR = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L8'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L8);

  l9SR = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L9'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L8);
      
  ls = ee.ImageCollection(l5SR.merge(l7SR).merge(l8SR).merge(l9SR));

  out = ls.set('system:time_start', ls.get('system:time_start')) ;
  return out.select('^SR_B.*');
}
//#####################################
// Create a function that adds a year band to the collection
var addYear = function(image){
  var date = ee.Date(image.get('system:time_start')).get('year');
  var year = ee.Image(date).subtract(2000).rename('Year').byte(); //get Year of Image (after 2000)
  return image.addBands(year);}; //add as band
//############# End of Functions ########################

Create the dates for temporal filtering
if(startJulian > endJulian){endJulian = endJulian + 365}

var startDate = ee.Date.fromYMD(startYear,1,1).advance(startJulian,'day');
var endDate = ee.Date.fromYMD(endYear,1,1).advance(endJulian,'day');
print(startDate, endDate, 'Study Time Period');


//Apply functions
//---------------
var collectionSR = getLandsatImageCollection(region,startDate,endDate,startJulian,endJulian,cloud)
var collectionSR_wIndex = collectionSR.map(function(i){
  var ndvi = i.normalizedDifference(['SR_B4', 'SR_B3']).rename('NDVI')
  return i.addBands(ndvi)
}); //add vegetation indices
var collection_IndexYear = collectionSR_wIndex.map(addYear); //add year band

Map.centerObject(region,7)
Map.setOptions('SATELLITE')
Map.addLayer(ee.Image().byte().paint(region,3,3),{palette:'yellow'},'Study Area Region: '+countryCode,false)
Map.addLayer(collectionSR_wIndex,{bands:['SR_B5','SR_B4','SR_B3'],gamma:1.00,'min': 0.05,'max': [0.30,0.40,0.40]},'Landsat Composite',false)

//=======================================================================================
//STEP 2: Create Image of Greatest NDVI Decrease Per Year
//=======================================================================================

//loop through image collection and get a maximum image for each year
var maxCollection = ee.ImageCollection(ee.List.sequence(startYear,endYear).map(function(year){ 
  return collection_IndexYear.filter(ee.Filter.calendarRange(year,year,'year')).max().set('Year', year);
}));


var maxList = ee.List(maxCollection.toList(maxCollection.size())); //convert image collection to list
//print('Max List of Annual Images',maxList);


//function to get 3-year moving average
var myFunction = function(i){
    var nextYear = ee.Number(i).add(1);
    var previousYear = ee.Number(i).add(-1)
    
    var nextY = ee.Image(maxList.get(nextYear)); // next image in collection
    var thisYear = ee.Image(maxList.get(i)); //current image in collection
    var previousY =  ee.Image(maxList.get(previousYear));//previous year in collection
    
    
    var avg = thisYear.select('NDVI').add(nextY.select('NDVI')).add(previousY.select('NDVI')).divide(3) // Calculate average of this image and next image in collection
    .multiply(-1).rename('NDVI_avg'); //multiply by -1 to flip average (we want loss not gain)
  return ee.Image(maxList.get(i)).addBands(avg);    // Add Moving average band 
  };

var listSequence = ee.List.sequence(1,maxList.size().subtract(2));
var avgCollection = ee.ImageCollection(listSequence.map(myFunction));// AS IMAGE COLLECTION


var avgList = ee.List(avgCollection.toList(avgCollection.size()));// AS LIST


//function to get derivative of NDVI curve (max change between years)
var myFunction2 = function(i){
    var aaa = ee.Number(i).add(1);
    var bbb = ee.Image(avgList.get(aaa)); // next image in collection
    var ccc = ee.Image(avgList.get(i)); //current image in collection
    var avg = bbb.select('NDVI_avg').subtract(ccc.select('NDVI_avg')).rename('NDVI_deriv');
  return  ee.Image(avgList.get(i)).addBands(avg);
};

var listSequence2 = ee.List.sequence(0,avgList.size().subtract(2));
var derivCollection = ee.ImageCollection(listSequence2.map(myFunction2)); // AS IMAGE COLLECTION

//Reduce collection to get year of maximum derivative
var derivMosaic = derivCollection.qualityMosaic('NDVI_deriv') ; // Quality Mosaic based on max derivative

var derivativeMaxYear = derivMosaic.select('Year'); // select the Year of max derivative 
// ----------------------Ghana_MinesRF_30m_MaxYear3YrAvg
// Export.image.toAsset({
//     image: derivativeMaxYear,
//     description: '7_'+countryCode+'_'+'MinesRF_30m_Max3YrAvg_'+startYear+'_'+endYear,
//     assetId: assetId+'7_'+countryCode+'_'+'MinesRF_30m_Max3YrAvg_'+startYear+'_'+endYear,
//     region: region,
//     crs:crs,
//     scale: 30,
//     maxPixels: 1e13
//   });
// //=======================================================================================
// //STEP 3: Get Area Per Year 2007-2017 and Chart
// //=======================================================================================

var years = ee.List.sequence(1,23,1);

var getArea = ee.FeatureCollection(years.map(function(i){
    var year = ee.Number(i);              //is this where we update?
    var def = maxYrDeriv.eq(year);//add derivative Max Year get new output to export later
    var defArea = def.multiply(ee.Image.pixelArea()).divide(10000).reduceRegion({
      reducer:ee.Reducer.sum(),
      geometry:region,
      scale: 100,
      maxPixels:1e13,
      tileScale: 16
      }).get('Year');
  return ee.Feature(null).set('Area', defArea).set('Year',year);
}));
print(getArea)
//Construct Bar Chart

var options = {
  title: 'Mining Area by Year',
  vAxis: {title: 'Area in Hectares'},
  legend: {position: 'none'},
  hAxis: {
    title: 'Year',
    logScale: false
  }
};

var areaChart = getArea.select(['Year','Area'])

print(areaChart.getInfo())

var chart = ui.Chart.feature.byFeature(areaChart,'Year');
var chart = chart.setChartType('ColumnChart')
var chart = chart.setOptions(options)
print(chart)



//=======================================================================================
//STEP 4: Map results
//=======================================================================================
//Set up visualization
var palette = ['#4B0082', '#9400D3',  '#0000FF', '#00FF00', '#FFFF00', '#FF7F00', '#FF0000'];
var yodVizParms = {
  min: 7,
  max: 17,
  palette: palette
};

// Map of Loss Year based on Maximum NDVI Derivative

//Get mines and clean
var final_mines = rf_classification.select(0).eq(1).selfMask();

//Set Variables
var mines = final_mines;
var scale = 30;

var minesMaxYear = derivativeMaxYear.updateMask(mines).clip(studyArea);

// Map of Loss Year based on Maximum NDVI Derivative
Map.addLayer(minesMaxYear,yodVizParms,'Max Derivative Year',true);


//Observation Period Landsat Imagery
Map.addLayer(collection_IndexYear.filterDate(obsstart,obsend).median().clip(region), {bands: ['B3', 'B2', 'B1'], min:200, max:1500}, 'Landsat Image', false);

//NDVI Average Collection
Map.addLayer(avgCollection.select("NDVI_avg"), {}, 'Average Collection', false);

//Derivative NDVI Collection
Map.addLayer(derivCollection.select('NDVI_deriv'), {}, 'Derivative Collection', false)


// =======================================================================================
// STEP 5: Export layers
// =======================================================================================

//Export Area Table
print('Area Collection',getArea);
Export.table.toDrive({
  collection:getArea, 
  description: "Ghana_Area_RF"
  });

//Export mines classification image
Export.image.toDrive({
  image: minesMaxYear.clip(studyArea),
  description: 'Ghana_MinesRF_30m_MaxYear3YrAvg2019Full',
  region: region,
  scale: scale,
  maxPixels: 1e13
});

//****************************************************************************************************************************

//END CODE///

真正代码

var roiId = 'projects/mangrovescience/SDG_Ghana/Gold_Mining/StudyAreaSubset';
var roi = ee.FeatureCollection(roiId);

var ic = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  .filterBounds(roi)
  .select(['SR_B4', 'SR_B5'], ['red', 'nir']);

// Simplifies the dates used in the original script.
var startYear = 2013;
var endYear = 2023;

var years = ee.List.sequence(startYear, endYear, 1); // [2013, ..., 2023]

ic = ic.filter(ee.Filter.calendarRange(startYear, endYear, 'year'));

function scaleImages(image) {
  var scale = 0.0000275;
  var offset = -0.2;
  return image
    .multiply(scale)
    .add(offset)
    .copyProperties(image, ['system:time_start']);
}

function computeNDVI(image) {
  var ndvi = image.normalizedDifference(['nir', 'red']).rename('ndvi');
  return ndvi.copyProperties(image, ['system:time_start']);
}

// Scales images and calculates the NDVI
var ndviCol = ic
  .map(scaleImages)
  .map(computeNDVI);

// For each year in "years", obtain an image representing the max NDVI value.
function getAnnualMaxImages(years) {
  var images = years.map(function(y) {
    y = ee.Number(y);
    
    var imagesYearY = ndviCol.filter(ee.Filter.calendarRange(y, y, 'year'));
    var date = ee.Date.fromYMD(y, 1, 1).millis();
    var maxImage = imagesYearY.max().set('system:time_start', date, 'year', y);
    
    return maxImage;
  });
  
  return ee.ImageCollection.fromImages(images);
}

var maxImages = getAnnualMaxImages(years);


// Get 3-year moving average and adds the year band.
var maxImagesList = maxImages.toList(maxImages.size());

var n = ee.Number(endYear - startYear);
var indices = ee.List.sequence(0, n.subtract(1), 1);

var avgImages = indices.map(function(index) {
  index = ee.Number(index);
  
  var prev = index.subtract(1);
  var curr = index;
  var next = index.add(1);
  
  var prevImg = ee.Image(maxImagesList.get(prev));
  var currImg = ee.Image(maxImagesList.get(curr));
  var nextImg = ee.Image(maxImagesList.get(next));
  
  var date = currImg.date().millis();
  var year = currImg.date().get('year');
  
  var avgImg = ee.ImageCollection([prevImg, currImg, nextImg]).mean();
  
  var yearBand = ee.Image(year)
    .subtract(2000)
    .toUint8()
    .rename('year')
    .updateMask(avgImg.mask());
  
  return avgImg
    .addBands(yearBand)
    .set('system:time_start', date, 'index', index);
});

avgImages = ee.ImageCollection.fromImages(avgImages);

// Remove the first and last year from the analysis - due to the 3-years moving
// average.
var minMaxIndices = ee.List(indices).reduce(ee.Reducer.minMax());
minMaxIndices = ee.Dictionary(minMaxIndices).values();

avgImages = avgImages
  .filter(ee.Filter.inList('index', minMaxIndices).not());

// It applies the reducer to obtain the lowest average for each pixel and the 
// year in which this lowest average was detected.
var result = avgImages
  .reduce(
    ee.Reducer.min(2).setOutputs(['ndvi_avg_min', 'year_of_ndvi_avg_min'])
  );
  
// Uncomment to check the results.
Map.addLayer(result.select(0), { min: 0, max: 0.8 });
Map.addLayer(result.select(1), { min: 13, max: 22 });

// Calculates the area, in square meters, for each year within the study area.
var pixelArea = ee.Image.pixelArea()
  .addBands(result.select('year_of_ndvi_avg_min'));

var areaByYear = result.reduceRegion({
  reducer: ee.Reducer.sum().group({
    groupField: 1,
    groupName: 'year'
  }),
  geometry: roi,
  scale: 30,
  maxPixels: 1e13
});

areaByYear = ee.List(areaByYear.get('groups'));
var areaByYearList = areaByYear.map(function(item) {
  var dict = ee.Dictionary(item); // { sum: ..., year: ... }
  var year = ee.Number(dict.get('year')).format(); // "13"
  var area = ee.Number(dict.get('sum')); // 123.456
  return ee.List([year, area]); // ["13", 123.456]
});

// { year: area } dictionary.
var theEnd = ee.Dictionary(areaByYearList.flatten());
print(theEnd)

函数

qualityMosaic(qualityBand)

Composites all the images in a collection, using a quality band as a per-pixel ordering function.

使用质量带作为每个像素的排序函数,合成图像集中的所有图像。

Arguments:

this:collection (ImageCollection):

The collection to mosaic.

qualityBand (String):

The name of the quality band in the collection.

Returns: Image

问题图 

 接缝图

 github

如果想处理条带的结果

GitHub - xingguangYan/Landsat-5-NDWI-image-restoration

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1488540.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大模型基础应用框架(ReACT\SFT\RAG)创新及零售业务落地

如何将大语言模型的强大能力融入实际业务、产生业务价值&#xff0c;是现在很多公司关注的焦点。在零售场&#xff0c;大模型应用也面临很多挑战。本文分享了京东零售技数中心推出融合Agent、SFT与RAG的大模型基础应用框架&#xff0c;帮助业务完成大模型微调、部署和应用&…

华为数通方向HCIP-DataCom H12-821题库(多选题:61-80)

第61题 ACL 可分为如下哪些类别? A.用户自定义 ACL B.基本 ACL C.二层ACL D.高级ACL 【参考答案】ABCD 【答案解析】 A. 用户自定义 ACL (User-defined ACL): 这是用户根据自身需求自定义的 ACL,用于实现特定的访问控制策略。B.基本 ACL (Standard ACL): 基本 ACL 是基于源 …

逆向案例四、进阶,爬取精灵数据咨询前五十页数据

python代码示例: import csv import execjs import requests f open(精灵数据.csv,w,encodingutf-8,newline) csv_writer csv.DictWriter(f,fieldnames[标题,发布时间,新闻来源,详情页链接,转自,点击量,新闻作者,发布时间小时,]) csv_writer.writeheader() data [] for pa…

HTTP/2、HTTP/3分别解决了什么问题

总的来说就是HTTP/1.1是请求-响应模型导致队头阻塞问题&#xff0c;HTTP2是TCP层面导致队头阻塞问题 HTTP/2 多路复用&#xff0c;解决了HTTP/1.1队头阻塞问题 HTTP/1.1 的实现是基于请求-响应模型的。同一个连接中&#xff0c;HTTP 完成一个事务&#xff08;请求与响应&…

【 10X summary report】怎么看?详细解读笔记

报告内容 在开始正式的分析之前&#xff0c;需要查看在对齐和计数过程中生成的任何总结统计信息。下图是由Cell Ranger工具创建的10X总结报告&#xff0c;在从10X scRNA-seq实验生成计数矩阵时会生成。 The left half of the report describes sequencing and mapping statist…

php开发项目 docx,pptx,excel表格上传阿里云,腾讯云存储后截取第一页生成缩略图

服务器或者存储上传的word,ppt和excel表格需要截取内容展示的时候,就需要管理后台每次上传文件时根据不同文件类型截取图片保存起来,并讲图片的地址保存到数据字段中.网上搜索了很多相关文章遇到的坑不少,经过2天时间终于完成了,将代码和遇到的问题完整记录下来. 本文用的…

基于SpringBoot+MYSQL的医护人员排班系统

基于springboot的医护人员排班系统录像 1、 前言介绍 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了医护人员排班系统的开发全过程。通过分析医护人员排班系统管理的不足&#xff0c;创建了一个计算机管理医护人员…

贪心 Leetcode 134 加油站

加油站 Leetcode 134 学习记录自代码随想录 在一条环路上有 n 个加油站&#xff0c;其中第 i 个加油站有汽油 gas[i] 升 你有一辆油箱容量无限的的汽车&#xff0c;从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发&#xff0c;开始时油…

企业内部培训考试系统题库导入功能设计

企业内部培训考试系统可自建题库&#xff0c;企业可以将已有的试题资源快速导入系统&#xff0c;系统具备智能选题功能&#xff0c;可以根据预设条件自动从题库中抽取试题&#xff0c;生成试卷&#xff0c;可以充分利用已有的教育资源&#xff0c;避免重复劳动&#xff0c;提高…

sc-MAVE

Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data单细胞转录组和开放染色质可及性数据的深度联合学习分析模型 在同一个细胞中同时分析转录组和染色质可及性信息为了解细胞状态提供了前所未有的解决方案。然而&#x…

[java] 23种设计模式之桥接模式

一、什么是桥接模式 桥接(Bridge)模式属于结构型设计模式。通过提供抽象化和实现化之间的桥接结构&#xff0c;来实现二者的解耦。把抽象(abstraction)与行为实现(implementation)分离开来&#xff0c;从而可以保持各部分的独立性以及应对它们的功能扩展。 二、适用场景 当一…

计算机专业必看的十部电影

计算机专业必看的十部电影 1. 人工智能2. 黑客帝国3. 盗梦空间4. 社交网络5. Her6. 模仿游戏7. 斯诺登8. 头号玩家9. 暗网10. 网络迷踪 计算机专业必看的十部电影&#xff0c;就像一场精彩盛宴&#xff01; 《黑客帝国》让你穿越虚拟世界&#xff0c;感受高科技的魅力《模仿游戏…

SDR架构 (一)为什么基带有I和Q路?

我之前做过自己的RTL-SDR。一直有一个疑惑。为啥rtl2832u芯片有一对差分I路&#xff0c;还有一对差分Q路。差分很好理解是为了抗干扰&#xff0c;但为啥要I和Q呢&#xff1f;并且我也知道不少人在自己修改的时候&#xff0c;保留I路对接在r820t2&#xff08;跟原版一样&#xf…

重学SpringBoot3-@EnableConfigurationProperties注解

重学SpringBoot3-EnableConfigurationProperties注解 1. 引言2. EnableConfigurationProperties 的作用3. 使用示例4. 总结 1. 引言 Spring Boot 提供了一种便捷的方式来管理和校验应用程序的配置&#xff0c;即通过类型安全的配置属性。EnableConfigurationProperties 注解在…

【论文】Continuous Rapid Action Value Estimates阅读笔记

之前在阅读KR-UCT论文时&#xff0c;里面提到过与UCT结合的主要两种启发式方法旨在指导探索策略&#xff0c;通过使用渐进拓宽&#xff08;PW&#xff09;限制考虑的行动的数量&#xff0c;并使用快速行动价值估计&#xff08;RAVE&#xff09;选择最有前途的行动。因此找了一篇…

C++模板完整版

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、泛型编程 如何实现一个通用的交换函数呢&#xff1f; void Swap(int& left, int& right) {int temp left…

[SpringCloud] OpenFeign核心架构原理 (一)

Feign的本质: 动态代理 七大核心组件 Feign底层是基于JDK动态代理来的, Feign.builder()最终构造的是一个代理对象, Feign在构建对象的时候会解析方法上的注解和参数, 获取Http请求需要用到基本参数以及和这些参数和方法参数的对应关系。然后发送Http请求, 获取响应, 再根据响…

需求评审会常见的5大核心问题

需求评审会是项目管理过程中的一个重要环节&#xff0c;其核心问题的顺利讨论和评审&#xff0c;对项目来说非常重要。其有助于项目成员对需求理解达成共识&#xff0c;明确需求的内容、目标和预期结果&#xff0c;尽早发现需求不合理之处&#xff0c;从而能够及时调整和完善&a…

物联卡禁止个人使用是有原因的,技术层面给大家深度分析一下

运营商禁止物联卡个人使用是硬性规定&#xff0c;但是现在很有很多不法商贩在倒卖物联卡给个人&#xff0c;套路是很多的&#xff0c;小编之前的文章里有几篇深度介绍&#xff0c;大家可以搜索看一下&#xff0c;今天就从技术层面来给大家详细分析一下为什么物联卡不适合个人使…

智慧社区养老:Java与SpringBoot的技术融合

✍✍计算机毕业编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java、…