目录
1、TF数据流图
1.1 TensorFlow结构分析
1.2 案例
2、图与TensorBoard
2.1 图结构
2.2 图相关操作
2.2.1 默认图
2.2.2 创建图
2.3 TensorBoard:可视化学习
2.3.1 数据序列化 - events文件
2.3.2 启动TensorBoard
2.4 OP
2.4.1 常见OP
2.4.2 指令名称
- TF数据流图
- 图与TensorBoard
- 会话
- 张量
- 变量OP
- 高级API
1、TF数据流图
1.1 TensorFlow结构分析
1.2 案例
import tensorflow as tf
def tensorflow_demo():
# tensorflow基本结构
# 原生python加法计算
a = 3
b = 4
c = a +b
print("c:\n",c)
# tensorflow实现加法计算
a_t = tf.constant(2)
b_t = tf.constant(3)
c_t = a_t + b_t
print("tensorflow:\n",c_t)
# 开启会话
with tf.Session() as sess:
c_t_value = sess.run(c_t)
print("c_t_value:\n",c_t_value)
return None
if __name__ == "__main__":
# 代码1 :tensorflow基本结构
tensorflow_demo()
2、图与TensorBoard
2.1 图结构
2.2 图相关操作
2.2.1 默认图
import tensorflow as tf
def graph_demo():
# 图的演示
# Tensorflow实现加法运算
a_t = tf.constant(2)
b_t = tf.constant(3)
c_t = a_t + b_t
print("tensorflow:\n", c_t)
# 查看默认图
# 方法1:调用方法
default_g = tf.get_default_graph()
print("default:\n",default_g)
# 方法2:查看属性
print("a_t的图属性:\n",a_t.graph)
print("c_t的图属性:\n",c_t.graph)
# 开启会话
with tf.Session() as sess:
c_t_value = sess.run(c_t)
print("c_t_value:\n", c_t_value)
print("sess的图属性:\n", sess.graph)
return None
if __name__ == "__main__":
# 代码2:图的演示
graph_demo()
2.2.2 创建图
import tensorflow as tf
def graph_demo():
# 图的演示
# Tensorflow实现加法运算
a_t = tf.constant(2)
b_t = tf.constant(3)
c_t = a_t + b_t
print("tensorflow:\n", c_t)
# 查看默认图
# 方法1:调用方法
default_g = tf.get_default_graph()
print("default:\n",default_g)
# 方法2:查看属性
print("a_t的图属性:\n",a_t.graph)
print("c_t的图属性:\n",c_t.graph)
# 开启会话
with tf.Session() as sess:
c_t_value = sess.run(c_t)
print("c_t_value:\n", c_t_value)
print("sess的图属性:\n", sess.graph)
# 自定义图
new_g = tf.Graph()
# 在自己的图中定义数据和操作
with new_g.as_default():
a_new = tf.constant(20)
b_new = tf.constant(30)
c_new = a_new + b_new
print("c_new:\n",c_new)
return None
if __name__ == "__main__":
# 代码2:图的演示
graph_demo()
import tensorflow as tf
def graph_demo():
# 图的演示
# Tensorflow实现加法运算
a_t = tf.constant(2)
b_t = tf.constant(3)
c_t = a_t + b_t
print("tensorflow:\n", c_t)
# 查看默认图
# 方法1:调用方法
default_g = tf.get_default_graph()
print("default:\n",default_g)
# 方法2:查看属性
print("a_t的图属性:\n",a_t.graph)
print("c_t的图属性:\n",c_t.graph)
# 自定义图
new_g = tf.Graph()
# 在自己的图中定义数据和操作
with new_g.as_default():
a_new = tf.constant(20)
b_new = tf.constant(30)
c_new = a_new + b_new
print("c_new:\n",c_new)
print("a_new的图属性:\n", a_new.graph)
print("c_new的图属性:\n", c_new.graph)
# 开启会话
with tf.Session() as sess:
c_t_value = sess.run(c_t)
print("c_t_value:\n", c_t_value)
print("sess的图属性:\n", sess.graph)
# 开启new_g的会话
with tf.Session(graph = new_g) as new_sess:
c_new_value = new_sess.run((c_new))
print("c_new_value:\n",c_new_value)
print("new_sess的图属性:\n",new_sess.graph)
return None
if __name__ == "__main__":
# 代码2:图的演示
graph_demo()