文章目录
- 前言
- 存储程序型计算机
- 代码怎么变成机器码?
- 解析指令和机器码
- CPU 是如何执行指令的?
- CPU中的寄存器
- if…else 来看程序的执行和跳转
- 分析
- 通过 if…else 和 goto 来实现循环
前言
大家好我是jiantaoyab,这是我所总结作为学习的笔记第三篇,在这里分享给大家,还有一些书籍《深入理解计算机系统》《计算机组成:结构化方法》《计算机体系结构:量化研究方法》,今天我们来了解计算机的指令
存储程序型计算机
古老的计算机写程序用的设备叫打孔卡(Punched Card),用这种设备编写程序的话,需要预先在纸上写出程序,然后在纸带或者卡片上打洞。这样,要写的程序、要处理的数据,就变成一条条纸带或者一张张卡片,之后再交给当时的计算机去处理,这个就是最底层的机器码,只有0和1
CPU 就是一个执行各种计算机指令(Instruction Code)的逻辑机器,CPU能够处理的语言叫机器语言,不同的 CPU 能够听懂的语言不太一样。比如,我们的个人电脑用的是 Intel 的 CPU,苹果手机用的是 ARM 的 CPU。这两者能听懂的语言就不太一样。类似这样两种 CPU 各自支持的语言,就是两组不同的计算机指令集,英文叫 Instruction Set。这里面的“Set”,其实就是数学上的集合,代表不同的单词、语法。不同的平台下具有相同指令集的CPU才能运行同一个程序
一个计算机程序,不可能只有一条指令,而是由成千上万条指令组成的。但是 CPU 里不能一直放着所有指令,所以计算机程序平时是存储在存储器中的。这种程序指令存储在存储器里面的计算机,我们就叫作存储程序型计算机(Stored-program Computer)。
代码怎么变成机器码?
其实我们可以把汇编代码理解成机器码的一种别名
这是一段简单的代码,要让这段程序在一个 Linux 操作系统上跑起来,我们需要把整个程序翻译成一个汇编语言(ASM,Assembly Language)的程序,这个过程我们一般叫编译(Compile)成汇编代码。
针对汇编代码,我们可以再用汇编器(Assembler)翻译成机器码(Machine Code)。这些机器码由0和1组成的机器语言表示。这一条条机器码,就是一条条的计算机指令。这样一串串的 16 进制数字,就是我们 CPU 能够真正认识的计算机指令。
gcc -g -c test.c //生成.o文件,如果在vs2013下这里的文件就是.ojb 目标文件
objdump -d -M intel -S test.o
可以看到,左侧有一堆16进制的数字,这些就是一条条机器码;右边有一系列的 push、mov、add、pop 等,这些就是对应的汇编代码。一行 C 语言代码,有时候只对应一条机器码和汇编代码,有时候则是对应两条机器码和汇编代码。汇编代码和机器码之间是一一对应的。
从高级语言到汇编代码,再到机器码,就是一个日常开发程序,最终变成了 CPU 可以执行的计算机指令的过程。
解析指令和机器码
常见的指令可以分成五大类
- 算术类指令。我们的加减乘除,在 CPU 层面,都会变成一条条算术类指令。
- 数据传输类指令。给变量赋值、在内存里读写数据,用的都是数据传输类指令。
- 逻辑类指令。逻辑上的与或非,都是这一类指令。
- 条件分支类指令。日常我们写的“if/else”,其实都是条件分支类指令。
- 无条件跳转指令。写一些大一点的程序,我们常常需要写一些函数或者方法。在调用函数的时候,其实就是发起了一个无条件跳转指令。
不同的 CPU 有不同的指令集,也就对应着不同的汇编语言和不同的机器码。这里采用最简单的 MIPS 指令集
MIPS 的指令是一个 32 位的整数,高 6 位叫操作码(Opcode),也就是代表这条指令具体是一条什么样的指令,剩下的 26 位有三种格式,分别是 R、I 和 J。
R 指令是一般用来做算术和逻辑操作,里面有读取和写入数据的寄存器的地址。如果是逻辑位移操作,后面还有位移操作的位移量,而最后的功能码,则是在前面的操作码不够的时候,扩展操作码表示对应的具体指令的。
I 指令,则通常是用在数据传输、条件分支,以及在运算的时候使用的并非变量还是常数的时候。这个时候,没有了位移量和操作码,也没有了第三个寄存器,而是把这三部分直接合并成了一个地址值或者一个常数。
J 指令就是一个跳转指令,高 6 位之外的 26 位都是一个跳转后的地址。
举一个简答的 add x,s1,s2,对应的 MIPS 指令里 opcode 是 0,rs 代表第一个寄存器 s1 的地址是 17,rt 代表第二个寄存器 s2 的地址是 18,rd 代表目标的临时寄存器 x 的地址,是 8。因为不是位移操作,所以位移量是 0。把这些数字拼在一起,就变成了一个 MIPS 的加法指令。
CPU 是如何执行指令的?
我们写好的代码变成了指令之后,是一条一条顺序执行的。逻辑上,我们可以认为,CPU 其实就是由一堆寄存器组成的。而寄存器就是 CPU 内部,由多个触发器(Flip-Flop)或者锁存器(Latches)组成的简单电路。触发器和锁存器,其实就是两种不同原理的数字电路组成的逻辑门
N 个触发器或者锁存器,就可以组成一个 N 位(Bit)的寄存器,能够保存 N 位的数据。比方说,我们用的 64 位 Intel 服务器,寄存器就是 64 位的
CPU中的寄存器
- PC 寄存器(Program Counter Register),我们也叫指令地址寄存器(Instruction Address Register)。用来存放下一条需要执行的计算机指令的内存地址。
- 指令寄存器(Instruction Register),用来存放当前正在执行的指令
- 条件码寄存器(Status Register),用里面的一个一个标记位(Flag),存放 CPU 进行算术或者逻辑计算的结果。
除了这些特殊的寄存器,CPU 里面还有更多用来存储数据和内存地址的寄存器。这样的寄存器通常一类里面不止一个。我们通常根据存放的数据内容来给它们取名字,比如整数寄存器、浮点数寄存器、向量寄存器和地址寄存器等等。有些寄存器既可以存放数据,又能存放地址,我们就叫它通用寄存器。
一个程序执行的时候,CPU 会根据 PC 寄存器里的地址,从内存里面把需要执行的指令读取到指令寄存器里面执行,然后根据指令长度自增,开始顺序读取下一条指令。可以看到,一个程序的一条条指令,在内存里面是连续保存的,也会一条条顺序加载,而有些特殊指令会修改 PC 寄存器里面的地址值。这样,下一条要执行的指令就不是从内存里面顺序加载的了。 if…else 条件语句其实就是跳转语句
if…else 来看程序的执行和跳转
执行
gcc -g -c test.c
objdump -d -M intel -S test.o
分析
可以看到,这里对于 r == 0 的条件判断,被编译成了 cmp 和 jne 这两条指令。
cmp 指令比较了前后两个操作数的值,这里的 DWORD PTR 代表操作的数据类型是 32 位的整数,而 [rbp-0x4] 则是一个寄存器的地址。所以,第一个操作数就是从寄存器里拿到的变量 r 的值。第二个操作数 0x0 就是我们设定的常量 0 的 16 进制表示。cmp 指令的比较结果,会存入到条件码寄存器当中去
在这里,如果比较的结果是 True,也就是 r == 0,就把零标志条件码(对应的条件码是 ZF,Zero Flag)设置为 1。除了零标志之外,Intel 的 CPU 下还有进位标志(CF,Carry Flag)、符号标志(SF,Sign Flag)以及溢出标志(OF,Overflow Flag),用在不同的判断条件下。
cmp 指令执行完成之后,PC 寄存器会自动自增,开始执行下一条 jne 的指令。
跟着的 jne 指令,是 jump if not equal 的意思,它会查看对应的零标志位。如果为 0,会跳转到后面跟着的操作数 42 的位置。这个 42,对应这里汇编代码的行号,也就是上面设置的 else 条件里的第一条指令。当跳转发生的时候,PC 寄存器就不再是自增变成下一条指令的地址,而是被直接设置成这里的 42 这个地址。这个时候,CPU 再把 42 地址里的指令加载到指令寄存器中来执行。
跳转到执行地址为 42 的指令,实际是一条 mov 指令,第一个操作数和前面的 cmp 指令一样,是另一个 32 位整型的寄存器地址,以及对应的 2 的 16 进制值 0x2。mov 指令把 2 设置到对应的寄存器里去,相当于一个赋值操作。然后,PC 寄存器里的值继续自增,执行下一条 mov 指令。
这条 mov 指令的第一个操作数 eax,代表累加寄存器,第二个操作数 0x0 则是 16 进制的 0 的表示。这条指令其实没有实际的作用,它的作用是一个占位符。我们回过头去看前面的 if 条件,如果满足的话,在赋值的 mov 指令执行完成之后,有一个 jmp 的无条件跳转指令。跳转的地址就是这一行的地址 49。我们的 main 函数返回值给0, mov eax, 0x0 其实就是给 main 一个 0 的返回值到累加器里面。if 条件里面的内容执行完成之后也会跳转到这里,和 else 里的内容结束之后的位置是一样的。
上一讲我们讲打孔卡的时候说到,读取打孔卡的机器会顺序地一段一段地读取指令,然后执行。执行完一条指令,它会自动地顺序读取下一条指令。如果执行的当前指令带有跳转的地址,比如往后跳 10 个指令,那么机器会自动将卡片带往后移动 10 个指令的位置,再来执行指令。同样的,机器也能向前移动,去读取之前已经执行过的指令。这也就是我们的 while/for 循环实现的原理
通过 if…else 和 goto 来实现循环
可以看到,对应的循环也是用 25 这个地址上的 cmp 比较指令,和紧接着的 jle 条件跳转指令来实现的。主要的差别在于,这里的 jle 跳转的地址,在这条指令之前的地址 1b,而非 if…else 编译出来的跳转指令之后。往前跳转使得条件满足的时候,PC 寄存器会把指令地址设置到之前执行过的指令位置,重新执行之前执行过的指令,直到条件不满足,顺序往下执行 jle 之后的指令,整个循环才结束。
jle 和 jmp 指令,有点像程序语言里面的 goto 命令,直接指定了一个特定条件下的跳转位置。虽然我们在用高级语言开发程序的时候反对使用 goto,但是实际在机器指令层面,无论是 if…else…也好,还是 for/while 也好,都是用和 goto 相同的跳转到特定指令位置的方式来实现的指令,直到条件不满足,顺序往下执行 jle 之后的指令,整个循环才结束。
jle 和 jmp 指令,有点像程序语言里面的 goto 命令,直接指定了一个特定条件下的跳转位置。虽然我们在用高级语言开发程序的时候反对使用 goto,但是实际在机器指令层面,无论是 if…else…也好,还是 for/while 也好,都是用和 goto 相同的跳转到特定指令位置的方式来实现的