Codeforces Round 930 (Div. 2 ABCDEF题) 视频讲解

news2025/1/17 3:10:05

A. Shuffle Party

Problem Statement

You are given an array a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an. Initially, a i = i a_i=i ai=i for each 1 ≤ i ≤ n 1 \le i \le n 1in.

The operation swap ( k ) \texttt{swap}(k) swap(k) for an integer k ≥ 2 k \ge 2 k2 is defined as follows:

  • Let d d d be the largest divisor † ^\dagger of k k k which is not equal to k k k itself. Then swap the elements a d a_d ad and a k a_k ak.

Suppose you perform swap ( i ) \texttt{swap}(i) swap(i) for each i = 2 , 3 , … , n i=2,3,\ldots, n i=2,3,,n in this exact order. Find the position of 1 1 1 in the resulting array. In other words, find such j j j that a j = 1 a_j = 1 aj=1 after performing these operations.

† ^\dagger An integer x x x is a divisor of y y y if there exists an integer z z z such that y = x ⋅ z y = x \cdot z y=xz.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104). The description of the test cases follows.

The only line of each test case contains one integer n n n ( 1 ≤ n ≤ 1 0 9 1 \le n \le 10^9 1n109) — the length of the array a a a.

Output

For each test case, output the position of 1 1 1 in the resulting array.

Example

Example

input
4
1
4
5
120240229
output
1
4
4
67108864

Note

In the first test case, the array is [ 1 ] [1] [1] and there are no operations performed.

In the second test case, a a a changes as follows:

  • Initially, a a a is [ 1 , 2 , 3 , 4 ] [1,2,3,4] [1,2,3,4].
  • After performing swap ( 2 ) \texttt{swap}(2) swap(2), a a a changes to [ 2 ‾ , 1 ‾ , 3 , 4 ] [\underline{2},\underline{1},3,4] [2,1,3,4] (the elements being swapped are underlined).
  • After performing swap ( 3 ) \texttt{swap}(3) swap(3), a a a changes to [ 3 ‾ , 1 , 2 ‾ , 4 ] [\underline{3},1,\underline{2},4] [3,1,2,4].
  • After performing swap ( 4 ) \texttt{swap}(4) swap(4), a a a changes to [ 3 , 4 ‾ , 2 , 1 ‾ ] [3,\underline{4},2,\underline{1}] [3,4,2,1].

Finally, the element 1 1 1 lies on index 4 4 4 (that is, a 4 = 1 a_4 = 1 a4=1). Thus, the answer is 4 4 4.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

void solve()
{
	int n;

	cin >> n;

	int i = 1;
	while (i * 2 <= n) i *= 2;

	cout << i << endl;
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int Data;

	cin >> Data;

	while (Data --)
		solve();

	return 0;
}

B. Binary Path

Problem Statement

You are given a 2 × n 2 \times n 2×n grid filled with zeros and ones. Let the number at the intersection of the i i i-th row and the j j j-th column be a i j a_{ij} aij.

There is a grasshopper at the top-left cell ( 1 , 1 ) (1, 1) (1,1) that can only jump one cell right or downwards. It wants to reach the bottom-right cell ( 2 , n ) (2, n) (2,n). Consider the binary string of length n + 1 n+1 n+1 consisting of numbers written in cells of the path without changing their order.

Your goal is to:

  1. Find the lexicographically smallest † ^\dagger string you can attain by choosing any available path;
  2. Find the number of paths that yield this lexicographically smallest string.

† ^\dagger If two strings s s s and t t t have the same length, then s s s is lexicographically smaller than t t t if and only if in the first position where s s s and t t t differ, the string s s s has a smaller element than the corresponding element in t t t.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104). The description of the test cases follows.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 2 ⋅ 1 0 5 2 \le n \le 2 \cdot 10^5 2n2105).

The second line of each test case contains a binary string a 11 a 12 … a 1 n a_{11} a_{12} \ldots a_{1n} a11a12a1n ( a 1 i a_{1i} a1i is either 0 0 0 or 1 1 1).

The third line of each test case contains a binary string a 21 a 22 … a 2 n a_{21} a_{22} \ldots a_{2n} a21a22a2n ( a 2 i a_{2i} a2i is either 0 0 0 or 1 1 1).

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output two lines:

  1. The lexicographically smallest string you can attain by choosing any available path;
  2. The number of paths that yield this string.

Example

Example

input
3
2
00
00
4
1101
1100
8
00100111
11101101
output
000
2
11000
1
001001101
4

Note

In the first test case, the lexicographically smallest string is 000 \mathtt{000} 000. There are two paths that yield this string:

In the second test case, the lexicographically smallest string is 11000 \mathtt{11000} 11000. There is only one path that yields this string:

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

void solve()
{
	int n;
	string s[2];
	cin >> n >> s[0] >> s[1];

	int p = n - 1;
	for (int i = 1; i < n; i ++)
		if (s[0][i] != '0' && s[1][i - 1] == '0')
		{
			p = i - 1;
			break;
		}
	string res;
	for (int i = 0; i <= p; i ++)
		res += s[0][i];
	res += s[1][p];
	for (int i = p + 1; i < n; i ++)
		res += s[1][i];

	int lst = 0;
	for (int i = n - 1, j = n; i >= 0; i --, j --)
		if (res[j] != s[1][i])
		{
			lst = i + 1;
			break;
		}

	cout << res << endl;
	cout << p - lst + 1 << endl;
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int Data;

	cin >> Data;

	while (Data --)
		solve();

	return 0;
}

C. Bitwise Operation Wizard

Problem Statement

There is a secret sequence p 0 , p 1 , … , p n − 1 p_0, p_1, \ldots, p_{n-1} p0,p1,,pn1, which is a permutation of { 0 , 1 , … , n − 1 } \{0,1,\ldots,n-1\} {0,1,,n1}.

You need to find any two indices i i i and j j j such that p i ⊕ p j p_i \oplus p_j pipj is maximized, where ⊕ \oplus denotes the bitwise XOR operation.

To do this, you can ask queries. Each query has the following form: you pick arbitrary indices a a a, b b b, c c c, and d d d ( 0 ≤ a , b , c , d < n 0 \le a,b,c,d < n 0a,b,c,d<n). Next, the jury calculates x = ( p a ∣ p b ) x = (p_a \mid p_b) x=(papb) and y = ( p c ∣ p d ) y = (p_c \mid p_d) y=(pcpd), where ∣ | denotes the bitwise OR operation. Finally, you receive the result of comparison between x x x and y y y. In other words, you are told if x < y x < y x<y, x > y x > y x>y, or x = y x = y x=y.

Please find any two indices i i i and j j j ( 0 ≤ i , j < n 0 \le i,j < n 0i,j<n) such that p i ⊕ p j p_i \oplus p_j pipj is maximum among all such pairs, using at most 3 n 3n 3n queries. If there are multiple pairs of indices satisfying the condition, you may output any one of them.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 3 1 \le t \le 10^3 1t103). The description of the test cases follows.

Interaction

The first line of each test case contains one integer n n n ( 2 ≤ n ≤ 1 0 4 2 \le n \le 10^4 2n104). At this moment, the permutation p 0 , p 1 , … , p n − 1 p_0, p_1, \ldots, p_{n-1} p0,p1,,pn1 is chosen. The interactor in this task is not adaptive. In other words, the sequence p p p is fixed in every test case and does not change during the interaction.

To ask a query, you need to pick four indices a a a, b b b, c c c, and d d d ( 0 ≤ a , b , c , d < n 0 \le a,b,c,d < n 0a,b,c,d<n) and print the line of the following form:

  • “? a b c d”

After that, you receive:

  • “<” if ( p a ∣ p b ) < ( p c ∣ p d ) (p_a \mid p_b) < (p_c \mid p_d) (papb)<(pcpd);
  • “=” if ( p a ∣ p b ) = ( p c ∣ p d ) (p_a \mid p_b) = (p_c \mid p_d) (papb)=(pcpd);
  • “>” if ( p a ∣ p b ) > ( p c ∣ p d ) (p_a \mid p_b) > (p_c \mid p_d) (papb)>(pcpd).

You can make at most 3 n 3n 3n queries of this form.

Next, if your program has found a pair of indices i i i and j j j ( 0 ≤ i , j < n 0 \le i, j < n 0i,j<n) such that p i ⊕ p j p_i \oplus p_j pipj is maximized, print the line of the following form:

  • “! i j”

Note that this line is not considered a query and is not taken into account when counting the number of queries asked.

After this, proceed to the next test case.

If you make more than 3 n 3n 3n queries during an interaction, your program must terminate immediately, and you will receive the Wrong Answer verdict. Otherwise, you can get an arbitrary verdict because your solution will continue to read from a closed stream.

After printing a query or the answer for a test case, do not forget to output the end of line and flush the output. Otherwise, you will get the verdict Idleness Limit Exceeded. To do this, use:

  • fflush(stdout) or cout.flush() in C++;
  • System.out.flush() in Java;
  • flush(output) in Pascal;
  • stdout.flush() in Python;
  • see the documentation for other languages.

It is guaranteed that the sum of n n n over all test cases does not exceed 1 0 4 10^4 104.

Hacks

To hack, follow the test format below.

The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 3 1 \le t \le 10^3 1t103). The description of the test cases follows.

The first line of each test case contains one integer n n n ( 2 ≤ n ≤ 1 0 4 2 \le n \le 10^4 2n104).

The second line of each test case contains n n n integers p 0 , p 1 , … , p n − 1 p_0,p_1,\ldots,p_{n-1} p0,p1,,pn1, which represent a permutation of integers from 0 0 0 to n − 1 n - 1 n1.

The sum of n n n over all test cases should not exceed 1 0 4 10^4 104.

Example

input
2
4
<
=
>

2

output
? 0 2 3 1
? 1 1 2 3
? 1 2 0 3
! 3 2
! 0 1

Note

In the first test case, the hidden permutation is p = [ 0 , 3 , 1 , 2 ] p=[0,3,1,2] p=[0,3,1,2].

For the query “? 0 2 3 1”, the jury return “<” because ( p 0 ∣ p 2 ) = ( 0 ∣ 1 ) = 1 < ( p 3 ∣ p 1 ) = ( 2 ∣ 3 ) = 3 (p_0 \mid p_2) = (0 \mid 1) =1 < (p_3 \mid p_1) = (2 \mid 3) = 3 (p0p2)=(01)=1<(p3p1)=(23)=3.

For the query “? 1 1 2 3”, the jury return “=” because ( p 1 ∣ p 1 ) = ( 3 ∣ 3 ) = 3 = ( p 2 ∣ p 3 ) = ( 1 ∣ 2 ) = 3 (p_1 \mid p_1) = (3\mid 3)= 3 = (p_2 \mid p_3) = (1 \mid 2)=3 (p1p1)=(33)=3=(p2p3)=(12)=3.

For the query “? 1 2 0 3”, the jury return “>” because ( p 1 ∣ p 2 ) = ( 3 ∣ 1 ) = 3 > ( p 0 ∣ p 3 ) = ( 0 ∣ 2 ) = 2 (p_1 \mid p_2) = (3 \mid 1) = 3 > (p_0 \mid p_3) = (0\mid 2)=2 (p1p2)=(31)=3>(p0p3)=(02)=2.

The answer i = 3 i = 3 i=3 and j = 2 j = 2 j=2 is valid: ( p 3 ⊕ p 2 ) = ( 2 ⊕ 1 ) = 3 (p_3 \oplus p_2) = (2 \oplus 1) = 3 (p3p2)=(21)=3 is indeed equal to the maximum possible value of p i ⊕ p j p_i \oplus p_j pipj. Another valid answer would be i = 0 i=0 i=0 and j = 1 j=1 j=1. As the number of queries does not exceed 3 n = 12 3n=12 3n=12, the answer is considered correct.

In the second test case, n = 2 n = 2 n=2, so p p p is either [ 0 , 1 ] [0, 1] [0,1] or [ 1 , 0 ] [1, 0] [1,0]. In any case, p 0 ⊕ p 1 = 1 p_0 \oplus p_1 = 1 p0p1=1 is maximum possible.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

int ask(int a, int b, int c, int d)
{
	cout << "? " << a << " " << b << " " << c << " " << d << endl;
	char t;
	cin >> t;
	if (t == '=') return 0;
	else if (t == '<') return 1;
	else return 2;
}

void solve()
{
	int n;

	cin >> n;

	int mx = 0;
	for (int i = 1; i < n; i ++)
		if (ask(mx, mx, i, i) == 1)
			mx = i;

	std::vector<int> best;
	best.push_back(0);
	for (int i = 1; i < n; i ++)
	{
		int j = *best.begin(), v = ask(i, mx, j, mx);
		if (v == 2)
			best.clear(), best.push_back(i);
		else if (v == 0)
			best.push_back(i);
	}

	int mn = *best.begin();
	for (int i = 1; i < best.size(); i ++)
		if (ask(mn, mn, best[i], best[i]) == 2)
			mn = best[i];

	cout << "! " << mx << " " << mn << endl;
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int Data;

	cin >> Data;

	while (Data --)
		solve();

	return 0;
}

D. Pinball

Problem Statement

There is a one-dimensional grid of length n n n. The i i i-th cell of the grid contains a character s i s_i si, which is either ‘<’ or ‘>’.

When a pinball is placed on one of the cells, it moves according to the following rules:

  • If the pinball is on the i i i-th cell and s i s_i si is ‘<’, the pinball moves one cell to the left in the next second. If s i s_i si is ‘>’, it moves one cell to the right.
  • After the pinball has moved, the character s i s_i si is inverted (i. e. if s i s_i si used to be ‘<’, it becomes ‘>’, and vice versa).
  • The pinball stops moving when it leaves the grid: either from the left border or from the right one.

You need to answer n n n independent queries. In the i i i-th query, a pinball will be placed on the i i i-th cell. Note that we always place a pinball on the initial grid.

For each query, calculate how many seconds it takes the pinball to leave the grid. It can be shown that the pinball will always leave the grid within a finite number of steps.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105). The description of the test cases follows.

The first line of each test case contains an integer n n n ( 1 ≤ n ≤ 5 ⋅ 1 0 5 1 \le n \le 5 \cdot 10^5 1n5105).

The second line of each test case contains a string s 1 s 2 … s n s_1s_2 \ldots s_{n} s1s2sn of length n n n consisting of characters ‘<’ and ‘>’.

It is guaranteed that the sum of n n n over all test cases does not exceed 5 ⋅ 1 0 5 5 \cdot 10^5 5105.

Output

For each test case, for each i i i ( 1 ≤ i ≤ n 1 \le i \le n 1in) output the answer if a pinball is initially placed on the i i i-th cell.

Example

Example

input
3
3
><<
4
<<<<
6
<><<<>
output
3 6 5
1 2 3 4
1 4 7 10 8 1

Note

In the first test case, the movement of the pinball for i = 1 i=1 i=1 is shown in the following pictures. It takes the pinball 3 3 3 seconds to leave the grid.

The movement of the pinball for i = 2 i=2 i=2 is shown in the following pictures. It takes the pinball 6 6 6 seconds to leave the grid.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

void solve()
{
	int n;
	string s;

	cin >> n >> s;

	s = '>' + s + '<';
	int lst = 0;
	std::vector<int> pre(n + 2, 0), suf(n + 2, 0), less(n + 2, 0), grt(n + 2, 0);
	std::vector<int> cnt1(n + 2, 0), cnt2(n + 2, 0), pos1, pos2;
	for (int i = 1; i <= n; i ++)
	{
		cnt1[i] = cnt1[i - 1] + (s[i] == '>');
		pre[i] = pre[i - 1] + (s[i] == '>') * i;
		if (s[i] == '<' && lst) less[i] = less[i - 1] + i - lst, lst = i;
		else if (s[i] == '<') less[i] = less[i - 1], lst = i;
		else less[i] = less[i - 1];
	}
	lst = 0;
	for (int i = n; i >= 1; i --)
	{
		suf[i] = suf[i + 1] + (s[i] == '<') * i, cnt2[i] = cnt2[i + 1] + (s[i] == '<');
		if (s[i] == '<') pos1.push_back(i);
		else pos2.push_back(i);
		if (s[i] == '>' && lst) grt[i] = grt[i + 1] + lst - i, lst = i;
		else if (s[i] == '>') grt[i] = grt[i + 1], lst = i;
		else grt[i] = grt[i + 1];
	}
	pos1.push_back(n + 1), pos2.push_back(0);
	sort(pos1.begin(), pos1.end());
	sort(pos2.begin(), pos2.end());

	for (int i = 1; i <= n; i ++)
	{
		// cerr << i << ":";
		if (cnt1[i] > cnt2[i] || (cnt1[i] == cnt2[i] && s[i] == '<'))
		{
			int tot = min(cnt1[i], cnt2[i]);
			if (!cnt2[i])
			{
				cout << n - i + 1 << " ";
				continue;
			}
			if (s[i] == '<')
			{
				auto it = lower_bound(pos1.begin(), pos1.end(), i), it2 = lower_bound(pos2.begin(), pos2.end(), i);
				int l1 = it - pos1.begin();
				int r1 = l1 + tot - 1;
				int r2 = ( -- it2) - pos2.begin();
				int l2 = r2 - tot + 1;
				cout << ((suf[pos1[l1]] - suf[pos1[r1] + 1]) - (pre[pos2[r2]] - pre[pos2[l2] - 1])) * 2 + less[pos1[r1]] - less[pos1[l1]] + (n - pos1[r1] + 1) << " ";
			}
			else
			{
				auto it = lower_bound(pos2.begin(), pos2.end(), i), it2 = lower_bound(pos1.begin(), pos1.end(), i);
				auto r1 = it - pos2.begin();
				int l1 = r1 - tot + 1;
				auto l2 = it2 - pos1.begin();
				int r2 = l2 + tot - 1;
				int v = ((suf[pos1[l2]] - suf[pos1[r2] + 1]) - (pre[pos2[r1]] - pre[pos2[l1] - 1])) * 2 + grt[pos2[l1 - 1]] - grt[pos2[r1]];
				cout << v + n - pos2[l1 - 1] + 1 << " ";
			}
		}
		else
		{
			int tot = min(cnt1[i], cnt2[i]);
			if (!cnt1[i])
			{
				cout << i << " ";
				continue;
			}
			if (s[i] == '<')
			{
				auto it = lower_bound(pos1.begin(), pos1.end(), i), it2 = lower_bound(pos2.begin(), pos2.end(), i);
				auto l1 = it - pos1.begin();
				int r1 = l1 + tot - 1;
				auto r2 = ( -- it2) - pos2.begin();
				int l2 = r2 - tot + 1;
				int v = ((suf[pos1[l1]] - suf[pos1[r1] + 1]) - (pre[pos2[r2]] - pre[pos2[l2] - 1])) * 2 + less[pos1[r1 + 1]] - less[pos1[l1]];
				cout << v + pos1[r1 + 1] << " ";
			}
			else
			{
				auto it = lower_bound(pos2.begin(), pos2.end(), i), it2 = lower_bound(pos1.begin(), pos1.end(), i);
				auto r1 = it - pos2.begin();
				int l1 = r1 - tot + 1;
				auto l2 = it2 - pos1.begin();
				int r2 = l2 + tot - 1;
				// cerr << l2 << " " << r2 << " " << l1 << " " << r1 << endl;
				int v = ((suf[pos1[l2]] - suf[pos1[r2] + 1]) - (pre[pos2[r1]] - pre[pos2[l1] - 1])) * 2 + grt[pos2[l1]] - grt[pos2[r1]];
				cout << v + pos2[l1] << " ";
			}
		}
	}
	cout << endl;
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int Data;

	cin >> Data;

	while (Data --)
		solve();

	return 0;
}

E. Pokémon Arena

Problem Statement

You are at a dueling arena. You also possess n n n Pokémons. Initially, only the 1 1 1-st Pokémon is standing in the arena.

Each Pokémon has m m m attributes. The j j j-th attribute of the i i i-th Pokémon is a i , j a_{i,j} ai,j. Each Pokémon also has a cost to be hired: the i i i-th Pokémon’s cost is c i c_i ci.

You want to have the n n n-th Pokémon stand in the arena. To do that, you can perform the following two types of operations any number of times in any order:

  • Choose three integers i i i, j j j, k k k ( 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ j ≤ m 1 \le j \le m 1jm, k > 0 k > 0 k>0), increase a i , j a_{i,j} ai,j by k k k permanently. The cost of this operation is k k k.
  • Choose two integers i i i, j j j ( 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ j ≤ m 1 \le j \le m 1jm) and hire the i i i-th Pokémon to duel with the current Pokémon in the arena based on the j j j-th attribute. The i i i-th Pokémon will win if a i , j a_{i,j} ai,j is greater than or equal to the j j j-th attribute of the current Pokémon in the arena (otherwise, it will lose). After the duel, only the winner will stand in the arena. The cost of this operation is c i c_i ci.

Find the minimum cost you need to pay to have the n n n-th Pokémon stand in the arena.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105). The description of the test cases follows.

The first line of each test case contains two integers n n n and m m m ( 2 ≤ n ≤ 4 ⋅ 1 0 5 2 \le n \le 4 \cdot 10^5 2n4105, 1 ≤ m ≤ 2 ⋅ 1 0 5 1 \le m \le 2 \cdot 10^5 1m2105, 2 ≤ n ⋅ m ≤ 4 ⋅ 1 0 5 2 \leq n \cdot m \leq 4 \cdot 10^5 2nm4105).

The second line of each test case contains n n n integers c 1 , c 2 , … , c n c_1, c_2, \ldots, c_n c1,c2,,cn ( 1 ≤ c i ≤ 1 0 9 1 \le c_i \le 10^9 1ci109).

The i i i-th of the following n n n lines contains m m m integers a i , 1 , a i , 2 , … , a i , m a_{i,1}, a_{i,2}, \ldots, a_{i,m} ai,1,ai,2,,ai,m ( 1 ≤ a i , j ≤ 1 0 9 1 \le a_{i,j} \le 10^9 1ai,j109).

It is guaranteed that the sum of n ⋅ m n \cdot m nm over all test cases does not exceed 4 ⋅ 1 0 5 4 \cdot 10^5 4105.

Output

For each test case, output the minimum cost to make the n n n-th Pokémon stand in the arena.

Example

input
4
3 3
2 3 1
2 9 9
6 1 7
1 2 1
3 3
2 3 1
9 9 9
6 1 7
1 2 1
4 2
2 8 3 5
18 24
17 10
1 10
1 1
6 3
21412674 3212925 172015806 250849370 306960171 333018900
950000001 950000001 950000001
821757276 783362401 760000001
570000001 700246226 600757652
380000001 423513575 474035234
315201473 300580025 287023445
1 1 1
output
2
6
17
1224474550

Note

In the first test case, the attribute array of the 1 1 1-st Pokémon (which is standing in the arena initially) is [ 2 , 9 , 9 ] [2,9,9] [2,9,9].

In the first operation, you can choose i = 3 i=3 i=3, j = 1 j=1 j=1, k = 1 k=1 k=1, and increase a 3 , 1 a_{3,1} a3,1 by 1 1 1 permanently. Now the attribute array of the 3 3 3-rd Pokémon is [ 2 , 2 , 1 ] [2,2,1] [2,2,1]. The cost of this operation is k = 1 k = 1 k=1.

In the second operation, you can choose i = 3 i=3 i=3, j = 1 j=1 j=1, and hire the 3 3 3-rd Pokémon to duel with the current Pokémon in the arena based on the 1 1 1-st attribute. Since a i , j = a 3 , 1 = 2 ≥ 2 = a 1 , 1 a_{i,j}=a_{3,1}=2 \ge 2=a_{1,1} ai,j=a3,1=22=a1,1, the 3 3 3-rd Pokémon will win. The cost of this operation is c 3 = 1 c_3 = 1 c3=1.

Thus, we have made the 3 3 3-rd Pokémon stand in the arena within the cost of 2 2 2. It can be proven that 2 2 2 is minimum possible.

In the second test case, the attribute array of the 1 1 1-st Pokémon in the arena is [ 9 , 9 , 9 ] [9,9,9] [9,9,9].

In the first operation, you can choose i = 2 i=2 i=2, j = 3 j=3 j=3, k = 2 k=2 k=2, and increase a 2 , 3 a_{2,3} a2,3 by 2 2 2 permanently. Now the attribute array of the 2 2 2-nd Pokémon is [ 6 , 1 , 9 ] [6,1,9] [6,1,9]. The cost of this operation is k = 2 k = 2 k=2.

In the second operation, you can choose i = 2 i=2 i=2, j = 3 j=3 j=3, and hire the 2 2 2-nd Pokémon to duel with the current Pokémon in the arena based on the 3 3 3-rd attribute. Since a i , j = a 2 , 3 = 9 ≥ 9 = a 1 , 3 a_{i,j}=a_{2,3}=9 \ge 9=a_{1,3} ai,j=a2,3=99=a1,3, the 2 2 2-nd Pokémon will win. The cost of this operation is c 2 = 3 c_2 = 3 c2=3.

In the third operation, you can choose i = 3 i=3 i=3, j = 2 j=2 j=2, and hire the 3 3 3-rd Pokémon to duel with the current Pokémon in the arena based on the 2 2 2-nd attribute. Since a i , j = a 1 , 2 = 2 ≥ 1 = a 2 , 2 a_{i,j}=a_{1,2}=2 \ge 1=a_{2,2} ai,j=a1,2=21=a2,2, the 3 3 3-rd Pokémon can win. The cost of this operation is c 3 = 1 c_3 = 1 c3=1.

Thus, we have made the 3 3 3-rd Pokémon stand in the arena within the cost of 6 6 6. It can be proven that 6 6 6 is minimum possible.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 4e6 + 10;

int h[N], e[N], ne[N], w[N], idx, id, dist[N], Vis[N];

void add(int a, int b, int c)
{
	e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}

void solve()
{
	int n, m;
	cin >> n >> m;

	for (int i = 1; i <= 3 * n * m; i ++)
		h[i] = -1;
	idx = 0;

	std::vector<int> c(n + 1);
	std::vector<vector<int>> a(n + 1, vector<int>(m + 1));
	for (int i = 1; i <= n; i ++)
		cin >> c[i];
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= m; j ++)
			cin >> a[i][j];

	id = n;
	for (int j = 1; j <= m; j ++)
	{
		std::vector<PII> v;
		for (int i = 1; i <= n; i ++)
			v.emplace_back(a[i][j], i);
		sort(v.begin(), v.end(), greater<>());
		int source = id + 1;
		for (auto i : v)
			add(i.second, ++ id, c[i.second]), add( ++ id, i.second, 0);//, cout << id << " " << i.second << " " << 0 << endl;
		for (int i = source; i <= id; i += 2)
			add(i, i + 1, 0);//, cerr << i << " " << i + 1 << " " << 0 << endl;
		for (int i = source, k = 1; i + 2 <= id; i += 2, k ++)
			add(i + 2, i, v[k - 1].first - v[k].first);//, cerr << i + 2 << " " << i << " " << v[k - 1].first - v[k].first << endl;
		for (int i = source + 1; i + 2 <= id; i += 2)
			add(i, i + 2, 0);//, cerr << i << " " << i + 2 << " " << 0 << endl;
	}

	for (int i = 1; i <= id; i ++) dist[i] = 1e18, Vis[i] = 0;
	priority_queue<PII, vector<PII>, greater<PII>> Heap;
	Heap.emplace(0, n), dist[n] = 0;
	while (Heap.size())
	{
		auto Tmp = Heap.top();
		Heap.pop();

		int u = Tmp.second;
		if (Vis[u]) continue;
		Vis[u] = 1;

		for (int i = h[u]; ~i; i = ne[i])
		{
			int j = e[i];
			if (dist[j] > dist[u] + w[i])
			{
				dist[j] = dist[u] + w[i];
				Heap.emplace(dist[j], j);
			}
		}
	}

	cout << dist[1] << endl;
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int Data;

	cin >> Data;

	while (Data --)
		solve();

	return 0;
}

F. Bitwise Paradox

Problem Statement

You are given two arrays a a a and b b b of size n n n along with a fixed integer v v v.

An interval [ l , r ] [l, r] [l,r] is called a good interval if ( b l ∣ b l + 1 ∣ … ∣ b r ) ≥ v (b_l \mid b_{l+1} \mid \ldots \mid b_r) \ge v (blbl+1br)v, where ∣ | denotes the bitwise OR operation. The beauty of a good interval is defined as max ⁡ ( a l , a l + 1 , … , a r ) \max(a_l, a_{l+1}, \ldots, a_r) max(al,al+1,,ar).

You are given q q q queries of two types:

  • “1 i x”: assign b i : = x b_i := x bi:=x;
  • “2 l r”: find the minimum beauty among all good intervals [ l 0 , r 0 ] [l_0,r_0] [l0,r0] satisfying l ≤ l 0 ≤ r 0 ≤ r l \le l_0 \le r_0 \le r ll0r0r. If there is no suitable good interval, output − 1 -1 1 instead.

Please process all queries.

Input

Each test contains multiple test cases. The first line contains the number of test cases t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105). The description of the test cases follows.

The first line of each test case contains two integers n n n and v v v ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105, 1 ≤ v ≤ 1 0 9 1 \le v \le 10^9 1v109).

The second line of each testcase contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109).

The third line of each testcase contains n n n integers b 1 , b 2 , … , b n b_1, b_2, \ldots, b_n b1,b2,,bn ( 1 ≤ b i ≤ 1 0 9 1 \le b_i \le 10^9 1bi109).

The fourth line of each testcase contains one integer q q q ( 1 ≤ q ≤ 2 ⋅ 1 0 5 1 \le q \le 2 \cdot 10^5 1q2105).

The i i i-th of the following q q q lines contains the description of queries. Each line is of one of two types:

  • “1 i x” ( 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ x ≤ 1 0 9 ) 1 \le x \le 10^9) 1x109);
  • “2 l r” ( 1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn).

It is guaranteed that both the sum of n n n and the sum of q q q over all test cases do not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output the answers for all queries of the second type.

Example

input
3
3 7
2 1 3
2 2 3
4
2 1 3
1 2 5
2 2 3
2 1 3
4 5
5 1 2 4
4 2 3 3
6
2 1 4
1 3 15
2 3 4
2 2 4
1 2 13
2 1 4
1 5
6
4
1
2 1 1
output
-1 3 2
5 2 2 1
-1

Note

In the first test case, a = [ 2 , 1 , 3 ] a = [2, 1, 3] a=[2,1,3], b = [ 2 , 2 , 3 ] b = [2, 2, 3] b=[2,2,3], and v = 7 v = 7 v=7.

The first query is of the second type and has l = 1 l = 1 l=1 and r = 3 r = 3 r=3. The largest interval available is [ 1 , 3 ] [1, 3] [1,3], and its bitwise OR is b 1 ∣ b 2 ∣ b 3 = 3 b_1 \mid b_2 \mid b_3 = 3 b1b2b3=3 which is less than v v v. Thus, no good interval exists.

The second query asks to change b 2 b_2 b2 to 5 5 5, so b b b becomes [ 2 , 5 , 3 ] [2, 5, 3] [2,5,3].

The third query is of the second type and has l = 2 l = 2 l=2 and r = 3 r = 3 r=3. There are three possible intervals: [ 2 , 2 ] [2, 2] [2,2], [ 3 , 3 ] [3, 3] [3,3], and [ 2 , 3 ] [2, 3] [2,3]. However, b 2 = 5 < v b_2 = 5 < v b2=5<v, b 3 = 3 < v b_3 = 3 < v b3=3<v. So only the last interval is good: it has b 2 ∣ b 3 = 7 b_2 \mid b_3 = 7 b2b3=7. The answer is thus max ⁡ ( a 2 , a 3 ) = 3 \max(a_2, a_3) = 3 max(a2,a3)=3.

The fourth query is of the second type and has l = 1 l = 1 l=1 and r = 3 r = 3 r=3. There are three good intervals: [ 1 , 2 ] [1, 2] [1,2], [ 2 , 3 ] [2, 3] [2,3], and [ 1 , 3 ] [1, 3] [1,3]. Their beauty is 2 2 2, 3 3 3, 3 3 3 correspondingly. The answer is thus 2 2 2.

In the second test case, a = [ 5 , 1 , 2 , 4 ] a = [5, 1, 2, 4] a=[5,1,2,4], b = [ 4 , 2 , 3 , 3 ] b = [4, 2, 3, 3] b=[4,2,3,3], and v = 5 v = 5 v=5.

The first query has l = 1 l = 1 l=1 and r = 4 r = 4 r=4. The only good intervals are: [ 1 , 2 ] [1, 2] [1,2], [ 1 , 3 ] [1, 3] [1,3], [ 1 , 4 ] [1, 4] [1,4]. Their beauty is 5 5 5, 5 5 5, 5 5 5 correspondingly. The answer is thus 5 5 5.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10, INF = 2e9;

int n, q, v;
int a[N], b[N];
int F1[N][32], lg[N];
struct Segment
{
	int l, r;
	int pre[32], suf[32], res;
}Tree[N << 2];

void Init()
{
	int m = log2(n) + 1;
    for (int j = 0; j < m; j ++ )
        for (int i = 1; i + (1 << j) - 1 <= n; i ++ )
            if (!j) F1[i][j] = a[i];
            else F1[i][j] = max(F1[i][j - 1], F1[i + (1 << j - 1)][j - 1]);
}

inline int Max(int l, int r)
{
    int len = r - l + 1;
    int k = lg[len];

    return max(F1[l][k], F1[r - (1 << k) + 1][k]);
}

void Pushup(Segment &rt, Segment L, Segment R)
{
	rt.l = L.l, rt.r = R.r;
	for (int i = 30; i >= 0; i --)
		rt.pre[i] = L.pre[i] ? L.pre[i] : R.pre[i], rt.suf[i] = R.suf[i] ? R.suf[i] : L.suf[i];
	int pl = L.r, pr = R.l;
	rt.res = min(L.res, R.res);
	for (int i = 30; i >= 0; i --)
	{
		int p = L.suf[i], q = R.pre[i];
		if (p) p = min(p, pl);
		if (q) q = max(q, pr);
		int lr = p ? Max(p, pr) : INF, rr = q ? Max(pl, q) : INF;
		if (lr < rr)
		{
			if (v >> i & 1)
			{
				if (lr < rt.res)
					pl = p;
				else break;
			}
			else
				rt.res = min(rt.res, lr);
		}
		else
		{
			if (v >> i & 1)
			{
				if (rr < rt.res)
					pr = q;
				else break;
			}
			else
				rt.res = min(rt.res, rr);
		}
	}
}

void Build(int u, int l, int r)
{
	Tree[u] = {l, r};
	if (l == r)
	{
		if (b[l] > v) Tree[u].res = a[l];
		else Tree[u].res = INF;
		for (int i = 30; i >= 0; i --)
			if (b[l] >> i & 1)
				Tree[u].pre[i] = Tree[u].suf[i] = l;
		return;
	}

	int mid = l + r >> 1;
	Build(u << 1, l, mid), Build(u << 1 | 1, mid + 1, r);
	Pushup(Tree[u], Tree[u << 1], Tree[u << 1 | 1]);
}

void Modify(int u, int x, int d)
{
	if (Tree[u].l == Tree[u].r)
	{
		if (d > v) Tree[u].res = a[x];
		else Tree[u].res = INF;
		for (int i = 30; i >= 0; i --)
			if (d >> i & 1)
				Tree[u].pre[i] = Tree[u].suf[i] = x;
			else
				Tree[u].pre[i] = Tree[u].suf[i] = 0;
		return;
	}
	
	int mid = Tree[u].l + Tree[u].r >> 1;
	if (mid >= x) Modify(u << 1, x, d);
	else Modify(u << 1 | 1, x, d);
	Pushup(Tree[u], Tree[u << 1], Tree[u << 1 | 1]);
}

Segment Query(int u, int l, int r)
{
	if (Tree[u].l >= l && Tree[u].r <= r)
		return Tree[u];

	int mid = Tree[u].l + Tree[u].r >> 1;
	if (mid >= l && mid < r)
	{
		Segment res;
		Pushup(res, Query(u << 1, l, r), Query(u << 1 | 1, l, r));
		return res;
	}
	else if (mid >= l) return Query(u << 1, l, r);
	else return Query(u << 1 | 1, l, r);
}

void solve()
{
	cin >> n >> v;
	v --;

	for (int i = 1, j = 1, k = 0; i <= n; i ++)
	{
		if (j * 2 <= i) k ++, j *= 2;
		lg[i] = k;
	}

	for (int i = 1; i <= n; i ++)
		cin >> a[i];
	for (int i = 1; i <= n; i ++)
		cin >> b[i];

	Init(), Build(1, 1, n);

	cin >> q;

	while (q --)
	{
		int op, l, r;
		cin >> op >> l >> r;

		if (op == 1)
			Modify(1, l, r);
		else
		{
			int v = Query(1, l, r).res;
			if (v == INF) printf("-1 ");
			else printf("%d ", v);
		}
	}
	printf("\n");
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);


	int Data;

	cin >> Data;

	while (Data --)
		solve();

	return 0;
}

视频讲解

Codeforces Round 930 (Div. 2)(A ~ F 题讲解)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1485246.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java练习(第5天)【总结】在字符串中寻找特定的字符(5种方法)

问题描述&#xff1a;在字符串中寻找特定字符 1、第1次出现位置 实现函数原型&#xff1a; int indexOf(char c) Java代码&#xff1a; import java.io.*; public class Way_1 {public static void main(String args[]){String str "Geeks for Geeks is a computer s…

智能边缘小站 CloudPond(低延迟、高带宽和更好的数据隐私保护)

智能边缘小站 CloudPond(低延迟、高带宽和更好的数据隐私保护) 边缘小站的主要功能是管理用户在线下部署的整机柜设施&#xff0c;一个边缘小站关联一个华为云指定的区域和一个用户指定的场地&#xff0c;相关的资源运行状况监控等。 边缘计算 迈入5G和AI时代&#xff0c;新…

【嵌入式实践】【芝麻】【设计篇-2】从0到1给电动车添加指纹锁:项目可行性分析

0. 前言 该项目是基于stm32F103和指纹模块做了一个通过指纹锁控制电动车的小工具。支持添加指纹、删除指纹&#xff0c;电动车进入P档等待时计时&#xff0c;计时超过5min则自动锁车&#xff0c;计时过程中按刹车可中断P档状态&#xff0c;同时中断锁车计时。改项目我称之为“芝…

Arcgis重分类

对于一张土地分类图&#xff0c;有时需要改变他的类型对应的值&#xff0c;如何在Arcgis中完成这个操作&#xff1f; 有时候&#xff0c;需要对土地利用类型的水土保持因子P进行赋值&#xff0c;林地、草地赋值给1&#xff0c;水田0.15&#xff0c;旱地0.35&#xff0c;水域、…

FreeRTOS学习笔记——FreeRTOS中断管理

什么是中断&#xff1f; 简介&#xff1a;让CPU打断正常运行的程序&#xff0c;转而去处理紧急的事件&#xff08;程序&#xff09;&#xff0c;就叫中断 例&#xff1a; 中断执行机制&#xff0c;可简单概括为三步&#xff1a; 中断优先级分组设置 ARM Cortex-M 使用了 8 位…

抽象类及抽象方法、多态(类,接口)、对象转型(自动,强转)、内部类(成员,静态,接口,局部,匿名内部类)--学习JavaEE的day16

day16 Day16 抽象类及抽象方法 //抽象类 public abstract class 类名{//抽象方法public abstract void method(); }abstract 关键字&#xff0c;用来修饰类和方法 不能与final&#xff0c;static&#xff0c;private一起修饰&#xff0c;不能被重写 抽象类 1.概念&#xff…

2024最新AI系统ChatGPT网站源码, AI绘画系统

一、前言说明 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧。已支持…

C# aes加密解密byte数组

using System.Security.Cryptography; using System.Text;namespace AESStu01;public class AesHelper {// AES加密密钥和向量&#xff08;需要保密&#xff09; private static readonly string Key "";//16长度字符串数字混合private static readonly string IV …

web漏洞与规避

文章目录 一、XSS 跨站脚本攻击1.1 XSS攻击的主要类型反射型XSS存储型XSSDOM型XSS 1.2 前端开发如何应对XSS 二、CSRF 跨站请求伪造2.1 CSRF例子2.2 前端开发如何应对CSRF 三、SQL 注入3.1 前端如何防御SQL注入 四、前端如何使用CSP 一、XSS 跨站脚本攻击 攻击者通过在受害者的…

Kubernetes 学习总结(46)—— Pod 不停重启问题分析与解决

我们在做性能测试的时候&#xff0c;往往会发现我们的pod服务&#xff0c;频繁重启&#xff0c;通过kubectl get pods 命令&#xff0c;我们来逐步定位问题。 现象:running的pod&#xff0c;短时间内重启次数太多。 定位问题方法:查看pod日志 kubectl get event …

寻找峰值[中等]

优质博文IT-BLOG-CN 一、题目 峰值元素是指其值严格大于左右相邻值的元素。给你一个整数数组nums&#xff0c;找到峰值元素并返回其索引。数组可能包含多个峰值&#xff0c;在这种情况下&#xff0c;返回 任何一个峰值 所在位置即可。 你可以假设nums[-1] nums[n] -∞。 你…

解决:Information:java: javacTask: 源发行版 8 需要目标发行版 1.8

解决&#xff1a;Information:java: javacTask: 源发行版 8 需要目标发行版 1.8 先点击 Project Structure 查看jdk是否为1.8版本 我这jdk版本为1.8版本的&#xff0c;但还是运行还是报错 据以上错误显示以及上述配置&#xff0c;我选择的编译器是jdk1.8的&#xff0c;但是在i…

Git LFS Github 提交大文件

问题背景 2024-03-03 一篇微服务系统测试工具的论文&#xff0c;事后发现自己一开始的理解有问题&#xff0c;导致自己算的预期值和论文中正确的值不一样。 测试工具原型的依赖定义有缺失&#xff0c;默认可能会用当前最新版&#xff0c;但时过境迁”最新版“变化会导致不兼容…

4款塞纸条盲盒交友源码,可以对接公众号

一元盲盒交友源码/脱单盲盒源码/交友盲盒/恋爱盲盒公众号版 可以对接自己支付&#xff0c;全部自定义 没有任何bug版本&#xff0c;已经测试完全可以 免费源码&#xff0c;不包搭建指导 源码下载地址专业知识分享社区-专业知识笔记免费分享 (chaobiji.cn)

springcloud:3.3测试重试机制

服务提供者【test-provider8001】 Openfeign远程调用服务提供者搭建 文章地址http://t.csdnimg.cn/06iz8 相关接口 测试远程调用&#xff1a;http://localhost:8001/payment/index 服务消费者【test-consumer-resilience4j8004】 Openfeign远程调用消费者搭建 文章地址http:/…

Git与GitHub:解锁版本控制的魔法盒子

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua&#xff0c;在这里我会分享我的知识和经验。&#x…

计算机设计大赛 深度学习机器视觉车道线识别与检测 -自动驾驶

文章目录 1 前言2 先上成果3 车道线4 问题抽象(建立模型)5 帧掩码(Frame Mask)6 车道检测的图像预处理7 图像阈值化8 霍夫线变换9 实现车道检测9.1 帧掩码创建9.2 图像预处理9.2.1 图像阈值化9.2.2 霍夫线变换 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分…

MyBatis 学习(七)之 缓存

目录 1 MyBatis 缓存介绍 2 一级缓存 3 二级缓存 3.1 二级缓存介绍 3.2 二级缓存配置 3.3 二级缓存测试 4 参考文档 1 MyBatis 缓存介绍 MyBatis 缓存是 MyBatis 中的一个重要特性&#xff0c;用于提高数据库查询的性能。MyBatis 提供了一级缓存和二级缓存两种类型的缓存…

数据结构:栈和队列的实现附上源代码(C语言版)

目录 前言 1.栈 1.1 栈的概念及结构 1.2 栈的底层数据结构选择 1.2 数据结构设计代码&#xff08;栈的实现&#xff09; 1.3 接口函数实现代码 &#xff08;1&#xff09;初始化栈 &#xff08;2&#xff09;销毁栈 &#xff08;3&#xff09;压栈 &#xff08;4&…

求最短路径之BF算法

介绍 全称Bellman-Ford算法&#xff0c;目的是求解有负权边的最短路径问题。 考虑环&#xff0c;根据环中边的边权之和的正负&#xff0c;将环分为零环、正环、负环。其中零环、正环不会影响最短路径的求解&#xff0c;而负环会影响最短路径的求解。 可用BF算法返回一个bool值…