ChatGPT支持下的PyTorch机器学习与深度学习技术应用

news2025/1/17 5:49:38

近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。本文详细介绍深度学习的基础知识,与经典机器学习算法的区别与联系,以及最新的迁移学习、循环神经网络、长短时记忆神经网络、时间卷积网络、对抗生成网络、Yolo目标检测算法、自编码器等算法的原理及其Pytorch编程实现方法。

郁磊(副教授)主要从事AI人工智能、大语言模型及软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的科研经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。已发表多篇高水平的国际学术研究论文。

第一章、ChatGPT在科研中的应用

1、ChatGPT对话初体验

2、GPT-3.5与GPT-4的区别

3、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

4、ChatGPT提示词使用技巧

5、基于ChatGPT的数据预处理(上传本地数据、数据预处理、数据可视化)

6、基于ChatGPT的机器学习与深度学习建模(算法原理讲解、自动生成代码、调试代码)

7、基于ChatGPT的论文写作(文献综述、论文框架、中英翻译、语法校正、文章润色等)

第二章、数据清洗

1、描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:算数平均值、标准差;数据的相关分析:相关系数)

2、数据标准化与归一化(为什么需要标准化与归一化?)

3、数据异常值、缺失值处理

4、数据离散化及编码处理

5、手动生成新特征

6、案例

第三章、线性回归模型

1、一元线性回归模型与多元线性回归模型(回归参数的估计、回归方程的显著性检验、残差分析)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、案例

第四章、前向型神经网络

1、BP神经网络的基本原理(人工神经网络的分类有哪些?有导师学习和无导师学习的区别是什么?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?BP神经网络建模的本质是什么?)

2、BP神经网络的Python代码实现(怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?什么是梯度爆炸与梯度消失?)

3、PyTorch代码实现神经网络的基本流程(Data、Model、Loss、Gradient)及训练过程(Forward、Backward、Update)

4、值得研究的若干问题(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?过拟合(Overfitting)与欠拟合(Underfitting)、泛化性能评价指标的设计、样本不平衡问题、模型评价与模型选择(奥卡姆剃刀定律)等)

5、案例:Linear模型、Logistic模型、Softmax函数输出、BP神经网络

第五章、KNN、贝叶斯分类与支持向量机

1、KNN分类模型(KNN算法的核心思想、距离度量方式的选择、K值的选取、分类决策规则的选择)

2、朴素贝叶斯分类模型(伯努利朴素贝叶斯BernoulliNB、类朴素贝叶斯CategoricalNB、高斯朴素贝叶斯besfGaussianNB、多项式朴素贝叶斯MultinomialNB、补充朴素贝叶斯ComplementNB)

3、SVM的工作原理(SVM的本质是解决什么问题?核函数的作用是什么?什么是支持向量?

4、SVM扩展知识(如何解决多分类问题?SVM除了建模型之外,还可以帮助我们做哪些事情?)

5、案例

第六章、决策树、随机森林、XGBoost、LightGBM

1、决策树的工作原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?

2、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”体现在哪些地方?随机森林的本质是什么?怎样可视化、解读随机森林的结果?)

3、Bagging与Boosting的区别与联系

4、AdaBoost vs. Gradient Boosting的工作原理

5. 常用的GBDT算法框架(XGBoost、LightGBM)

6、案例

第七章、变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、案例

第八章、群优化算法

1、遗传算法(Genetic Algorithm, GA)的基本原理(粒子群算法、蜻蜓算法、蝙蝠算法、模拟退火算法等与遗传算法的区别与联系)

2、遗传算法的Python代码实现

3、案例一:一元函数的寻优计算

4、案例二:离散变量的寻优计算(特征选择)

第九章、卷积神经网络

1、深度学习简介(深度学习大事记:Model + Big Data + GPU + AlphaGo)

2、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6案例:

(1)CNN预训练模型实现物体识别

(2)利用卷积神经网络抽取抽象特征

(3)自定义卷积神经网络拓扑结构

第十章、迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、基于深度神经网络模型的迁移学习算法

3、案例:猫狗大战(Dogs vs. Cats

第十一章、RNN与LSTM

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、案例:时间序列预测(北京市污染物预测)

第十二章、目标检测算法

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、案例讲解:

(1)利用预训练好的YOLO模型实现目标检测(图像检测、视频检测、摄像头实时检测)

(2)数据标注演示(LabelImage使用方法介绍)

(3)训练自己的目标检测数据集

第十三章、自编码器

1、什么是自编码器(Auto-Encoder, AE)?

2、经典的几种自编码器模型原理介绍(AE、Denoising AE, Masked AE)

3、案例:

(1)基于自编码器的噪声去除

(2)基于自编码器的手写数字特征提取与重构

(3)基于掩码自编码器的缺失图像重构

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247680679&idx=4&sn=41ac52c3469e5745216069f04b0b036f&chksm=fa775d9acd00d48cd1f91e69b1d140032c154f69ff253d26cca885c62fadf8a7cd6dc863b4aa&token=936512705&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1485191.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索那些能唤起情感共鸣的壁纸

1、方小童在线工具集 网址: 方小童 该网站是一款在线工具集合的网站,目前包含PDF文件在线转换、随机生成美女图片、精美壁纸、电子书搜索等功能,喜欢的可以赶紧去试试!

平台工程: 用Backstage构建开发者门户 - 2

本文介绍了如何使用开源Backstage构建自己的开发者门户,并基于此实践平台工程。本系列共两篇文章,这是第二篇。原文: Platform Engineering: Building Your Developer Portal with Backstage — Part 2 在本教程第一部分中我们了解了Backstage这个用于构…

Docker基础教程 - 1 Docker简介

更好的阅读体验:点这里 ( www.doubibiji.com ) 1 Docker简介 Docker是一个强大的容器化平台,让你能够更轻松地构建、部署和运行应用程序。 下面我们来学习 Docker。 1.1 Docker是什么 1 现在遇到的问题 每次部署一台服务器&…

Python学习 day07(JSON)

JSON 各种编程语言存储数据的容器不尽相同,在Python中有字典dict这样的数据类型,而其他语言可能没有对应的字典,为了让不同的语言都能够相互通用的传递数据,JSON就是一种非常良好的中转数据格式,如下: JSON…

广和通5G智能模组SC171支持Android、Linux和Windows系统,拓宽智能物联网应用

世界移动通信大会2024期间,广和通宣布:5G智能模组SC171除支持Android操作系统外,还兼容Linux和Windows系统,帮助更多智能终端客户快速迭代产品,拓宽智能化应用覆盖范围。 广和通SC171系列基于高通QCM6490物联网解决方案…

flstudio21中文版下载百度网盘2024最新版本下载

FL Studio 21有中文版。从FL Studio 20.8版本起,软件就开始支持简体中文。用户可以在软件设置中选择中文作为界面语言,从而更方便地使用各项功能。此外,FL Studio 21的中文版还针对中国用户进行了优化,提供了更加本地化的支持和使…

图神经网络实战——基于DeepWalk创建节点表示

图神经网络实战——基于DeepWalk创建节点表示 0. 前言1. Word2Vec1.1 CBOW 与 skip-gram1.2 构建 skip-gram 模型1.3 skip-gram 模型1.4 实现 Word2Vec 模型 2. DeepWalk 和随机行走3. 实现 DeepWalk小结系列链接 0. 前言 DeepWalk 是机器学习 (machine learning, ML) 技术在图…

Java虚拟机(JVM)从入门到实战【上】

Java虚拟机(JVM)从入门到实战【上】,涵盖类加载,双亲委派机制,垃圾回收器及算法等知识点,全系列6万字。 一、基础篇 P1 Java虚拟机导学课程 P2 初识JVM 什么是JVM Java Virtual Machine 是Java虚拟机。…

2024.03.01作业

1. 基于UDP的TFTP文件传输 #include "test.h"#define SER_IP "192.168.1.104" #define SER_PORT 69 #define IP "192.168.191.128" #define PORT 9999enum mode {TFTP_READ 1,TFTP_WRITE 2,TFTP_DATA 3,TFTP_ACK 4,TFTP_ERR 5 };void get_…

javaWebssh在线授课辅导系统myeclipse开发mysql数据库MVC模式java编程计算机网页设计

一、源码特点 java ssh在线授课辅导系统是一套完善的web设计系统(系统采用ssh框架进行设计开发),对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用 B/S模式开发。开发环境为TOMCAT7.…

ESP-01S烧录AT指令

一、准备工具 硬件工具 1、ESP32-01S 2、USB转TTL线(也可以用USB转TTL模块,我这里是没有,所以没有用) 红线5V黑线GND白线RXD绿线TXD 3、单片机(用途后面说) 软件工具 4、首先打开->安信可官网下载E…

开源模型Mistral 7B+Amazon SageMaker部署指南

一、Mistral 7B简述 Mistral AI 是一家总部位于法国的 AI 公司,其使命是将公开可用的模型提升至最先进的性能水平。他们专注于构建快速而安全的大型语言模型(LLM),此类模型可用于从聊天机器人到代码生成等各种任务。不久前其发布…

洛谷p1225 c++(使用高精度)

题解: 一开始我这个代码想到的是使用递归来求解 int digui(int n){int sum=0;if(n==1)sum=1;if(n==2)sum=2;if(n==1||n==2)return sum;if(n>2){return sum+=digui(n-1)+digui(n-2);} } 但是后面发现明显超时,我试图用记忆化搜索来抢救一下,所以就有了下面代码 int di…

Benchmark学习笔记

小记一篇Benchmark的学习笔记 1.什么是benchmark 在维基百科中,是这样子讲的 “As computer architecture advanced, it became more difficult to compare the performance of various computer systems simply by looking at their specifications.Therefore, te…

实战:Oracle Weblogic 11g 安装部署(10.3.6.0)

导读 本文介绍在redhat linux 6.6上安装Oracle weblogic 11g(10.3.6.0)版本 环境:redhat6.6 jdk 1.7 1、下载webLogic10.3.6 http://www.oracle.com/technetwork/cn/middleware/weblogic/downloads/wls-main-091116-zhs.html2 、在linux的ro…

win11系统中nginx简单的代理配置

一.背景 为了公司安排的师带徒任务。 操作系统版本:win11家庭版 nginx版本:1.24.0 二.配置代理 之前文章已经说明了nginx简单的安装,要看阅读这个文章哈。web服务器nginx下载及在win11的安装-CSDN博客 1.配置需求识别 前端服务nginx(80…

Java进阶-IO(3)

话接上回,继续java IO的学习。上一次说完了字符流的读写数据,这次将基础部分剩余的一点内容看完。 一、流按功能分类 1、系统流 1.1 概述 系统流的类为 java.lang.System。Sytem 类封装了 Java 程序运行时的 3 个系统流。 System.in:标…

Vue3快速上手(十六)Vue3路由传参大全

Vue3路由传参 一、传参的多种方式 1.1 拼接方式 这种方式适合传递单个参数的情况&#xff0c;比如点击查看详情&#xff0c;传个id这样的场景 传参&#xff1a; <RouterLink to"/person?id1" active-class"active">person</RouterLink> …

类与对象(一)

目录 1 什么是面向过程和面向对象 1.1举例 2类的引入 3类的定义 3.1类的两种定义方式&#xff1a; 4.类的访问限定符及封装 4.1访问限定符 4.1.1为什么要有访问限定符 4.1.2有哪些访问限定符呢&#xff1f; 4.1.3简单举例理解 4.1.4C中的class与struct的区别(面试问题…

使用pyannote-audio实现声纹分割聚类

使用pyannote-audio实现声纹分割聚类 # GitHub地址 https://github.com/MasonYyp/audio1 简单介绍 pyannote.audio是用Python编写的用于声纹分割聚类的开源工具包。在PyTorch机器学习基础上&#xff0c;不仅可以借助性能优越的预训练模型和管道实现声纹分割聚类&#xff0c;还…