第一篇【传奇开心果系列】Python的自动化办公库技术点案例示例:深度解读Pandas库

news2025/1/18 11:58:37

传奇开心果博文系列

  • 系列博文目录
    • Python的自动化办公库技术点案例示例系列
  • 博文目录
    • 前言
    • 一、主要特点和功能介绍
    • 二、Series 示例代码
    • 三、DataFrame示例代码
    • 四、数据导入/导出示例代码
    • 五、数据清洗示例代码
    • 六、数据选择和过滤示例代码
    • 七、数据合并和连接示例代码
    • 八、数据分组和聚合示例代码
    • 九、数据转换示例代码
    • 十、时间序列数据处理示例代码
    • 十一、高效处理大型数据集示例代码
    • 十二、支持向量化操作示例代码
    • 十三、数据分析和可视化示例代码
    • 十四、社区支持举例说明
    • 十五、归纳总结

系列博文目录

Python的自动化办公库技术点案例示例系列

博文目录

前言

在这里插入图片描述
在这里插入图片描述Pandas是一个流行的Python数据处理库,提供了易于使用的数据结构和数据分析工具,使得在Python中进行数据清洗、数据分析和数据处理变得更加简单和高效。

一、主要特点和功能介绍

在这里插入图片描述
在这里插入图片描述以下是Pandas的一些主要特点和功能:

  1. 数据结构
    -Series:类似于一维数组,可以存储不同类型的数据,并带有标签(索引)。
    -DataFrame:类似于二维表格,由多个Series组成,每列可以是不同的数据类型。

  2. 数据操作
    -数据导入/导出:Pandas支持从各种数据源中导入数据,如CSV文件、Excel表格、数据库等,并可以将处理后的数据导出。
    -数据清洗:处理缺失数据、重复数据、异常值等。
    -数据选择和过滤:通过标签或位置选择数据,进行数据筛选和过滤。
    -数据合并和连接:合并多个数据集,支持不同类型的连接操作。
    -数据分组和聚合:按照指定的条件对数据进行分组,并进行聚合操作,如求和、平均值等。
    -数据转换:对数据进行排序、重塑、透视等操作。
    -时间序列数据处理:提供了强大的时间序列数据处理功能。

  3. 性能优势
    -Pandas基于NumPy构建,能够高效处理大型数据集。
    -支持向量化操作,避免了使用显式循环,提高了数据处理的效率。

  4. 灵活性
    -可以与其他Python库(如NumPy、Matplotlib等)结合使用,实现更复杂的数据分析和可视化任务。

  5. 社区支持
    -Pandas拥有庞大的社区支持和活跃的开发者社区,提供了丰富的文档、教程和示例,便于学习和使用。

总的来说,Pandas是一个功能强大且灵活的数据处理工具,适用于各种数据分析和数据处理任务。如果你需要进行数据清洗、数据分析或数据处理,Pandas通常是一个很好的选择。

二、Series 示例代码

在这里插入图片描述
在这里插入图片描述当创建一个Pandas Series 对象时,你可以传入一个包含数据的列表或数组,并可以选择性地指定索引。以下是一个简单的示例代码,演示如何创建一个包含不同类型数据并具有标签索引的 Pandas Series:

import pandas as pd

# 创建一个包含不同类型数据的 Pandas Series
data = [10, 'Hello', 3.5, True]
index = ['A', 'B', 'C', 'D']

# 使用数据列表和索引列表创建 Series 对象
series = pd.Series(data, index=index)

# 打印 Series 对象
print(series)

在这个示例中,我们创建了一个包含整数、字符串、浮点数和布尔值的 Pandas Series,每个值都有一个对应的标签索引。运行这段代码后,你将看到类似以下输出:

A       10
B    Hello
C      3.5
D     True
dtype: object

这个 Series 包含了不同类型的数据,并且每个数据都与一个索引标签相关联。这使得在 Pandas 中处理数据时更加灵活和方便。

三、DataFrame示例代码

在这里插入图片描述
在这里插入图片描述当创建一个 Pandas DataFrame 时,你可以传入一个字典,其中键是列名,值是列数据(可以是列表、数组或 Series)。以下是一个简单的示例代码,演示如何创建一个包含不同数据类型的 Pandas DataFrame,每列可以是不同的数据类型:

import pandas as pd

# 创建一个包含不同数据类型的 Pandas DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': ['apple', 'banana', 'cherry', 'date'],
    'C': [2.5, 3.7, 1.2, 4.9],
    'D': [True, False, True, False]
}

# 使用字典创建 DataFrame 对象
df = pd.DataFrame(data)

# 打印 DataFrame 对象
print(df)

在这个示例中,我们创建了一个包含整数、字符串、浮点数和布尔值的 Pandas DataFrame。每列的数据类型可以是不同的,这是 Pandas DataFrame 的一个重要特性。运行这段代码后,你将看到类似以下输出:

   A       B    C      D
0  1   apple  2.5   True
1  2  banana  3.7  False
2  3  cherry  1.2   True
3  4    date  4.9  False

这个 DataFrame 包含了四列数据,每列可以是不同的数据类型,类似于一个二维表格。Pandas DataFrame 提供了强大的数据操作功能,使得数据分析和处理变得更加简单和高效。

四、数据导入/导出示例代码

在这里插入图片描述
在这里插入图片描述Pandas 提供了丰富的功能来导入和导出数据,包括从 CSV 文件、Excel 表格、数据库等数据源中导入数据,并将处理后的数据导出到各种格式。以下是一些示例代码,演示如何使用 Pandas 进行数据导入和导出:

  1. 从 CSV 文件导入数据并将处理后的数据导出到 CSV 文件:
import pandas as pd

# 从 CSV 文件导入数据
df = pd.read_csv('data.csv')

# 处理数据...

# 将处理后的数据导出到 CSV 文件
df.to_csv('processed_data.csv', index=False)
  1. 从 Excel 表格导入数据并将处理后的数据导出到 Excel 文件:
import pandas as pd

# 从 Excel 表格导入数据
df = pd.read_excel('data.xlsx')

# 处理数据...

# 将处理后的数据导出到 Excel 文件
df.to_excel('processed_data.xlsx', index=False)
  1. 从数据库导入数据并将处理后的数据导出到数据库表:
import pandas as pd
import sqlite3

# 连接到 SQLite 数据库
conn = sqlite3.connect('database.db')

# 从数据库表导入数据
query = "SELECT * FROM table"
df = pd.read_sql_query(query, conn)

# 处理数据...

# 将处理后的数据导出到数据库表
df.to_sql('processed_table', conn, index=False, if_exists='replace')

通过这些示例代码,你可以了解如何使用 Pandas 从不同数据源中导入数据,并在处理后将数据导出到所需的格式中。Pandas 提供了简单而强大的方法来处理各种数据导入和导出任务,使得数据分析工作更加高效和便捷。

五、数据清洗示例代码

在这里插入图片描述
在这里插入图片描述在数据分析中,数据清洗是一个非常重要的步骤,它包括处理缺失数据、重复数据、异常值等问题。Pandas 提供了丰富的功能来进行数据清洗。以下是一些示例代码,演示如何使用 Pandas 进行数据清洗:

  1. 处理缺失数据:
import pandas as pd

# 创建包含缺失数据的示例 DataFrame
data = {
    'A': [1, 2, None, 4],
    'B': ['apple', 'banana', 'cherry', None],
    'C': [2.5, None, 1.2, 4.9]
}

df = pd.DataFrame(data)

# 检查缺失数据
print(df.isnull())

# 填充缺失数据
df.fillna(0, inplace=True)
  1. 处理重复数据:
import pandas as pd

# 创建包含重复数据的示例 DataFrame
data = {
    'A': [1, 2, 2, 4],
    'B': ['apple', 'banana', 'banana', 'date']
}

df = pd.DataFrame(data)

# 检查重复数据
print(df.duplicated())

# 删除重复数据
df.drop_duplicates(inplace=True)
  1. 处理异常值:
import pandas as pd

# 创建包含异常值的示例 DataFrame
data = {
    'A': [1, 2, 3, 100],
    'B': ['apple', 'banana', 'cherry', 'date']
}

df = pd.DataFrame(data)

# 检查异常值
print(df[df['A'] > 10])

# 替换异常值
df.loc[df['A'] > 10, 'A'] = 10

通过这些示例代码,你可以了解如何使用 Pandas 处理缺失数据、重复数据和异常值。数据清洗是数据分析过程中的关键步骤,有效的数据清洗可以提高数据分析的准确性和可靠性。

六、数据选择和过滤示例代码

在这里插入图片描述

在这里插入图片描述在 Pandas 中,你可以通过标签或位置选择数据,进行数据筛选和过滤。以下是一些示例代码,演示如何使用 Pandas 进行数据选择和过滤:

  1. 通过标签选择数据:
import pandas as pd

# 创建示例 DataFrame
data = {
    'A': [1, 2, 3, 4, 5],
    'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']
}

df = pd.DataFrame(data, index=['X', 'Y', 'Z', 'W', 'V'])

# 通过标签选择单列数据
column_data = df['A']

# 通过标签选择多列数据
multiple_columns_data = df[['A', 'B']]

# 通过标签选择单行数据
row_data = df.loc['Z']

# 通过标签选择多行数据
multiple_rows_data = df.loc[['X', 'Y']]
  1. 通过位置选择数据:
import pandas as pd

# 创建示例 DataFrame
data = {
    'A': [1, 2, 3, 4, 5],
    'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']
}

df = pd.DataFrame(data)

# 通过位置选择单列数据
column_data = df.iloc[:, 0]

# 通过位置选择多列数据
multiple_columns_data = df.iloc[:, [0, 1]]

# 通过位置选择单行数据
row_data = df.iloc[2]

# 通过位置选择多行数据
multiple_rows_data = df.iloc[[0, 1]]

通过这些示例代码,你可以了解如何使用 Pandas 通过标签或位置选择数据,进行数据筛选和过滤。Pandas 提供了灵活的方法来选择和操作数据,使得数据分析工作更加高效和便捷。

七、数据合并和连接示例代码

在这里插入图片描述
在这里插入图片描述在 Pandas 中,你可以使用不同类型的连接操作来合并多个数据集。以下是一些示例代码,演示如何使用 Pandas 进行数据合并和连接:

  1. 使用 pd.concat() 进行数据合并:
import pandas as pd

# 创建示例 DataFrame
data1 = {
    'A': [1, 2, 3],
    'B': ['apple', 'banana', 'cherry']
}

data2 = {
    'A': [4, 5, 6],
    'B': ['date', 'elderberry', 'fig']
}

df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)

# 沿行方向合并两个 DataFrame
result = pd.concat([df1, df2])
  1. 使用 pd.merge() 进行数据连接:
import pandas as pd

# 创建示例 DataFrame
data1 = {
    'key': ['K0', 'K1', 'K2'],
    'A': [1, 2, 3]
}

data2 = {
    'key': ['K0', 'K1', 'K3'],
    'B': ['apple', 'banana', 'cherry']
}

df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)

# 内连接
result_inner = pd.merge(df1, df2, on='key', how='inner')

# 左连接
result_left = pd.merge(df1, df2, on='key', how='left')

# 右连接
result_right = pd.merge(df1, df2, on='key', how='right')

# 外连接
result_outer = pd.merge(df1, df2, on='key', how='outer')

通过这些示例代码,你可以了解如何使用 Pandas 进行数据合并和连接。Pandas 提供了丰富的功能来支持不同类型的连接操作,使得合并多个数据集变得简单和灵活。

八、数据分组和聚合示例代码

在这里插入图片描述
在这里插入图片描述在 Pandas 中,你可以使用数据分组和聚合功能来按照指定的条件对数据进行分组,并进行聚合操作,如求和、平均值等。以下是一些示例代码,演示如何使用 Pandas 进行数据分组和聚合:

import pandas as pd

# 创建示例 DataFrame
data = {
    'Category': ['A', 'B', 'A', 'B', 'A', 'B'],
    'Value': [10, 20, 30, 40, 50, 60]
}

df = pd.DataFrame(data)

# 按照 'Category' 列进行分组,并计算每组的平均值
grouped = df.groupby('Category').mean()

# 按照多列进行分组,并计算每组的总和
grouped_multiple = df.groupby(['Category']).sum()

# 对多列进行分组,并同时计算多个聚合函数
grouped_multiple_functions = df.groupby('Category').agg({'Value': ['sum', 'mean']})

# 对每个分组应用自定义的聚合函数
def custom_aggregation(x):
    return x.max() - x.min()

custom_aggregated = df.groupby('Category').agg({'Value': custom_aggregation})

# 对每个分组应用多个自定义的聚合函数
custom_aggregated_multiple = df.groupby('Category').agg({'Value': [custom_aggregation, 'mean']})

通过这些示例代码,你可以了解如何使用 Pandas 进行数据分组和聚合操作。Pandas 提供了强大的功能来轻松地对数据进行分组和应用各种聚合函数,帮助你更好地理解数据并进行数据分析。

九、数据转换示例代码

在这里插入图片描述
在这里插入图片描述在 Pandas 中,你可以对数据进行各种转换操作,包括排序、重塑、透视等。以下是一些示例代码,演示如何使用 Pandas 进行数据转换:

  1. 数据排序:
import pandas as pd

# 创建示例 DataFrame
data = {
    'A': [3, 2, 1, 4],
    'B': ['apple', 'banana', 'cherry', 'date']
}

df = pd.DataFrame(data)

# 按照 'A' 列进行升序排序
sorted_df = df.sort_values(by='A')
  1. 数据重塑(Pivot):
import pandas as pd

# 创建示例 DataFrame
data = {
    'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'],
    'B': ['one', 'one', 'two', 'two', 'one', 'one'],
    'C': [1, 2, 3, 4, 5, 6]
}

df = pd.DataFrame(data)

# Pivot 操作
pivot_df = df.pivot(index='A', columns='B', values='C')
  1. 数据透视:
import pandas as pd

# 创建示例 DataFrame
data = {
    'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'],
    'B': ['one', 'one', 'two', 'two', 'one', 'one'],
    'C': [1, 2, 3, 4, 5, 6]
}

df = pd.DataFrame(data)

# 数据透视表
pivot_table = df.pivot_table(index='A', columns='B', values='C', aggfunc='sum')

通过这些示例代码,你可以了解如何使用 Pandas 进行数据转换操作,包括排序、重塑和透视等。Pandas 提供了丰富的功能来帮助你对数据进行灵活的转换和分析。

十、时间序列数据处理示例代码

在这里插入图片描述
在这里插入图片描述Pandas 提供了强大的时间序列数据处理功能,可以帮助你轻松处理时间序列数据。以下是一些示例代码,演示如何使用 Pandas 处理时间序列数据:

  1. 创建时间序列数据:
import pandas as pd
import numpy as np

# 创建一个时间范围为一周的时间序列数据
dates = pd.date_range('2024-02-26', periods=7)

# 创建一个 DataFrame,使用时间序列作为索引
df = pd.DataFrame(np.random.randn(7, 3), index=dates, columns=['A', 'B', 'C'])
  1. 时间序列重采样:
# 将时间序列数据按照每月重新采样,并计算每月的平均值
monthly_resampled = df.resample('M').mean()
  1. 移动窗口统计:
# 计算时间序列数据的滚动平均值
rolling_mean = df['A'].rolling(window=3).mean()
  1. 时间序列数据的时区转换:
# 创建一个带有时区信息的时间戳
ts = pd.Timestamp('2024-02-26 08:00', tz='Europe/London')

# 将时区转换为美国纽约时区
ts_ny = ts.tz_convert('America/New_York')

通过这些示例代码,你可以了解如何使用 Pandas 处理时间序列数据,包括创建时间序列数据、重采样、移动窗口统计以及时区转换等操作。Pandas 提供了丰富的功能来支持时间序列数据的处理和分析,让你能够更轻松地处理时间相关的数据。

十一、高效处理大型数据集示例代码

在这里插入图片描述

在这里插入图片描述Pandas 基于 NumPy 构建,能够高效处理大型数据集。以下是一些示例代码,演示如何使用 Pandas 处理大型数据集:

  1. 创建一个大型数据集:
import pandas as pd
import numpy as np

# 创建一个包含100万行和3列的随机数据集
n = 1000000
data = {
    'A': np.random.rand(n),
    'B': np.random.rand(n),
    'C': np.random.rand(n)
}

df = pd.DataFrame(data)
  1. 对大型数据集进行聚合操作:
# 计算每列的平均值
mean_values = df.mean()
  1. 对大型数据集进行筛选操作:
# 筛选出满足条件的行
filtered_data = df[df['A'] > 0.5]
  1. 对大型数据集进行分组和汇总操作:
# 按照 'B' 列进行分组,并计算每组的平均值
grouped_data = df.groupby('B').mean()

通过这些示例代码,你可以看到 Pandas 在处理大型数据集时的高效性。Pandas 提供了优化的数据结构和操作,使得处理大型数据集变得更加简单和高效。无论是数据聚合、筛选、分组还是其他操作,Pandas 都能够快速地处理大规模的数据,为数据分析和处理提供了强大的工具支持。

十二、支持向量化操作示例代码

在这里插入图片描述
在这里插入图片描述Pandas 支持向量化操作,这意味着你可以避免使用显式循环,而是直接对整个数据集执行操作,从而提高数据处理的效率。以下是一些示例代码,演示如何使用 Pandas 进行向量化操作:

  1. 向量化算术操作:
import pandas as pd
import numpy as np

# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.randint(0, 10, size=(5, 3)), columns=['A', 'B', 'C'])

# 对整个 DataFrame 执行向量化算术操作
result = df['A'] + df['B'] * df['C']
  1. 向量化函数应用:
# 使用 apply 函数对整列数据应用自定义函数
df['D'] = df['A'].apply(lambda x: x**2)
  1. 向量化条件操作:
# 根据条件对 DataFrame 进行填充
df['E'] = np.where(df['C'] > 5, 'High', 'Low')

通过这些示例代码,你可以看到 Pandas 如何支持向量化操作,从而避免显式循环,提高数据处理的效率。向量化操作利用了底层的 NumPy 数组实现,能够高效地处理大型数据集,使得数据处理变得更加简洁和快速。在实际数据处理过程中,推荐尽可能使用向量化操作,以提高代码的执行效率。

十三、数据分析和可视化示例代码

在这里插入图片描述
在这里插入图片描述当与其他 Python 库(如 NumPy、Matplotlib 等)结合使用时,Pandas 可以实现更复杂的数据分析和可视化任务。以下是一些示例代码,展示了 Pandas 与 NumPy 和 Matplotlib 结合使用的情况:

  1. 结合 NumPy 进行数据处理:
import pandas as pd
import numpy as np

# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.randint(0, 10, size=(5, 3)), columns=['A', 'B', 'C'])

# 使用 NumPy 函数对 DataFrame 进行操作
df['D'] = np.sqrt(df['A']**2 + df['B']**2)
  1. 结合 Matplotlib 进行数据可视化:
import matplotlib.pyplot as plt

# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.rand(50, 2), columns=['X', 'Y'])

# 绘制散点图
plt.scatter(df['X'], df['Y'])
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Scatter Plot')
plt.show()
  1. 结合 NumPy 和 Matplotlib 进行数据分析和可视化:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 创建一个包含随机数据的 DataFrame
df = pd.DataFrame(np.random.randn(100, 2), columns=['A', 'B'])

# 计算移动平均值
df['MA'] = df['A'].rolling(window=10).mean()

# 绘制折线图
plt.plot(df['A'], label='A')
plt.plot(df['MA'], label='Moving Average')
plt.legend()
plt.xlabel('Index')
plt.ylabel('Value')
plt.title('Moving Average Plot')
plt.show()

通过这些示例代码,你可以看到 Pandas 如何与 NumPy 和 Matplotlib 结合使用,实现更复杂的数据处理和可视化任务。这种结合可以让你充分利用各个库的优势,完成更多样化和复杂度更高的数据分析工作。无论是数据处理、分析还是可视化,这种结合都能为你提供强大的工具支持。

十四、社区支持举例说明

在这里插入图片描述Pandas拥有庞大的社区支持和活跃的开发者社区,提供了丰富的文档、教程和示例,让用户更容易学习和使用。以下是一些示例代码,展示了如何利用Pandas的文档、教程和示例资源:

  1. 查看Pandas官方文档:
import webbrowser

# 打开Pandas官方文档网站
webbrowser.open('https://pandas.pydata.org/docs/')
  1. 查看Pandas官方教程:
import webbrowser

# 打开Pandas官方教程网站
webbrowser.open('https://pandas.pydata.org/docs/getting_started/index.html')
  1. 查看Pandas官方示例库:
import webbrowser

# 打开Pandas官方示例库网站
webbrowser.open('https://pandas.pydata.org/docs/getting_started/index.html#tutorials')

通过这些示例代码,你可以方便地访问Pandas的官方文档、教程和示例资源,这些资源对于学习和使用Pandas都非常有帮助。官方文档提供了详细的API参考和用例说明,官方教程则提供了入门指导和实用技巧,而官方示例库则包含了丰富的示例代码,帮助你更好地理解和应用Pandas库。利用这些资源,你可以更高效地学习和使用Pandas,从而更好地处理和分析数据。

十五、归纳总结

在这里插入图片描述Pandas 是一个强大的数据处理库,主要用于数据清洗、数据转换和数据分析。以下是一些关键的 Pandas 知识点的归纳总结:

  1. 数据结构:
    -Series:一维数据结构,类似于数组或列表。
    -DataFrame:二维数据结构,类似于表格,由多个 Series 组成。

  2. 数据导入与导出:
    -从 CSV、Excel、SQL 数据库等不同数据源导入数据。
    -将处理后的数据导出为 CSV、Excel 等格式。

  3. 数据查看与处理:
    -查看数据:head()、tail()、info()、describe() 等方法。
    -选择数据:使用 loc、iloc、[] 运算符。
    -缺失值处理:dropna()、fillna()。
    -重复值处理:drop_duplicates()。

  4. 数据筛选与排序:
    -条件筛选:使用布尔索引、query() 方法。
    -排序:sort_values()、sort_index()。

  5. 数据分组与聚合:
    -groupby():按照指定条件对数据进行分组。
    -聚合函数:sum()、mean()、count() 等。
    -多重索引:实现多层次的分组和聚合。

  6. 数据合并与连接:
    -concat():沿着指定轴合并多个 DataFrame。
    -merge():根据一个或多个键将不同 DataFrame 连接起来。

  7. 数据透视表与重塑:
    -pivot_table():创建数据透视表。
    -stack()、unstack():数据重塑操作。

  8. 时间序列数据处理:
    -时间索引:将时间列设置为索引。
    -日期范围:生成日期范围序列。
    -时序数据分析:时间重采样、移动窗口统计等操作。

  9. 大数据集处理:
    -分块处理:使用 chunksize 处理大型数据集。
    -内存优化:选择合适的数据类型、减少内存占用。

  10. 数据可视化:
    -与 Matplotlib、Seaborn 等库结合进行数据可视化。
    -绘制折线图、柱状图、散点图等图表。

在这里插入图片描述

以上是 Pandas 中一些常用的知识点,掌握这些知识可以帮助你更好地处理和分析数据。通过实践和不断学习,你可以更深入地了解 Pandas,并利用其强大功能解决实际数据处理问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1484995.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络编程(IP、端口、协议、UDP、TCP)【详解】

目录 1.什么是网络编程? 2.基本的通信架构 3.网络通信三要素 4.UDP通信-快速入门 5.UDP通信-多发多收 6.TCP通信-快速入门 7.TCP通信-多发多收 8.TCP通信-同时接收多个客户端 9.TCP通信-综合案例 1.什么是网络编程? 网络编程是可以让设…

Tomcat负载均衡、动静分离

目录 引言 实验图解 1.实验环境搭建 2.部署Nginx服务器及配置静态页面Web服务 3.部署Tomcat服务及配置动态页面Web服务 4.实验验收 动态页面 静态页面 引言 tomcat服务既可以处理动态页面,也可以处理静态页面;但其处理静态页面的速度远远不如…

【解决方案】ArcGIS Engine二次开发时,运行后出现“正尝试在 OS 加载程序锁内执行托管代码。不要尝试在 DllMain...”

我们在做ArcGIS Engine二次开发时,特别是新手,安装好了开发环境,满怀信心的准备将按照教程搭建好的框架在Visual Studio中进行运行。点击运行后,却出现了“正尝试在 OS 加载程序锁内执行托管代码。不要尝试在 DllMain 或映像初始化…

猫耳语音下载(mediadown)

猫耳语音下载(mediadown) 一、介绍 猫耳语音下载,能够帮助你下载猫耳音频节目。如果你是会员,它还能帮你下载会员节目。 二、下载地址 下载:猫耳语音下载(mediadown) 百度网盘下载:猫耳语音下载(mediadown) 三、安装教程 将下载的文件解压到D:\xibinhui,D:\Pr…

数据结构 - Trie树(字符串统计、最大异或对)

文章目录 前言Part 1:Trie字符串统计1.题目描述输入格式输出格式数据范围输入样例输出样例 2.算法 Part 2:最大异或对1.题目描述输入格式输出格式数据范围输入样例输出样例 2.算法 前言 本篇博客将介绍Trie树的常见应用,包括:Trie…

服务器硬件基础知识

1. 服务器分类 服务器分类 服务器的分类没有一个统一的标准。 从多个多个维度来看服务器的分类可以加深我们对各种服务器的认识。 N.B. CISC: complex instruction set computing 复杂指令集计算 RISC: reduced instruction set computer 精简指令集计算 EPIC: explicitly p…

flurl升级之后没有FlurlNewtonsoftJsonSerializer

新建NewtonsoftJsonSerializer.cs /// <summary> /// ISerializer implementation based on Newtonsoft.Json. /// Default serializer used in calls to GetJsonAsync, PostJsonAsync, etc. /// </summary> public class NewtonsoftJsonSerializer : IJsonSerial…

Project_Euler-45 题解

Project_Euler-45 题解 题目 思路 非常简单&#xff0c;枚举六边形数字&#xff0c;然后判断他们是不是三角形和五边形数&#xff0c;如果是&#xff0c;那么输出。 代码 #include <stdio.h> #include <stdlib.h> #include <math.h> #include <string.…

【详识JAVA语言】逻辑控制

概述 我的曾经&#xff1a; 早上8:00起床--->洗漱--->吃早饭--->上课--->吃午饭--->上课--->运动--->吃完饭--->玩手机--->睡觉 每天的生活貌似都是这么规律&#xff0c;顺序的做着每件事&#xff0c;前途一片渺茫~~~ 直到有一天&#xff1a; 我…

[Java 探索者之路] 一个大厂都在用的分布式任务调度平台

分布式任务调度平台是一种能够在分布式计算环境中调度和管理任务的系统&#xff0c;在此环境下&#xff0c;各个任务可以在独立的节点上运行。它有助于提升资源利用率&#xff0c;增强系统扩展性以及提高系统对错误的容忍度。 文章目录 1. 分布式任务调度平台1. 基本概念1.1 任…

snakeyaml1.x升级2.x导致项目启动报错

snakeyaml1.x升级2.x,修复漏洞 1.背景 在工作中&#xff0c;经常会有漏洞扫描&#xff0c;有一次看到了snakeyaml的漏洞&#xff1a; 项目框架&#xff1a;springBoot 版本&#xff1a;2.2.6.RELEASE snakeyaml 中央仓库信息 snakeyaml中央仓库地址&#xff1a;https://m…

基于 Amazon EKS 的 Stable Diffusion ComfyUI 部署方案

01 背景介绍 Stable Diffusion 作为当下最流行的开源 AI 图像生成模型在游戏行业有着广泛的应用实践&#xff0c;无论是 ToC 面向玩家的游戏社区场景&#xff0c;还是 ToB 面向游戏工作室的美术制作场景&#xff0c;都可以发挥很大的价值&#xff0c;如何更好地使用 Stable Dif…

程序项目打包发布方法,采用InstallShield软件

重点&#xff1a; 1.程序项目做出来了&#xff0c;需要打包发布给用户。如何打包是关键。 2.采用InstallShield软件进行发布。 步骤一&#xff1a;创建一个依赖三方库配置环境的bat文件的项目。 &#xff08;主要测试三方库打包 和如果有bat文件&#xff0c;需要先创建环境&…

YOLOv9独家原创改进|使用DySample超级轻量的动态上采样算子

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;主力高效涨点&#xff01;&#xff01;&#xff01; 一、DySample论文摘要 尽管最近的基于内核的动态上采样器如CARAFE、FADE和SAPA取得了令人印象深刻的性能提升&#xff0c;但它们引入了大量的工作量&…

Canvas笔记03:Canvas元素功能、属性、获取、原理等一文讲透

hello&#xff0c;我是贝格前端工场&#xff0c;最近在学习canvas&#xff0c;分享一些canvas的一些知识点笔记&#xff0c;本期分享canvas元素的知识&#xff0c;欢迎老铁们一同学习&#xff0c;欢迎关注&#xff0c;如有前端项目可以私信贝格。 Canvas元素是HTML5中的一个重…

加密隧道技术

在现在的互联网上传输数据&#xff0c;首要考虑的就是安全。这关乎到你的隐私&#xff0c;个人信息&#xff0c;财产安全等等重大问题。如果你的程序本身传输的信息没有加密&#xff0c;也可以通过其他辅助方式让你的通信加密。一些工具的就是为了解决这样的场景的&#xff0c;…

【二分】第k个缺失的数

第K个缺失的数 链接 . - 力扣&#xff08;LeetCode&#xff09;. - 备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/kth-missing-positive-number/ 题目 题解 二段…

【GPU驱动开发】-mesa简介

前言 不必害怕未知&#xff0c;无需恐惧犯错&#xff0c;做一个Creator&#xff01; 一、mesa介绍 Mesa 是一个开源的3D图形库&#xff0c;它实现了多种图形API&#xff0c;包括 OpenGL、Vulkan 和 OpenCL。Mesa 的目标是提供一个开源、跨平台的图形库&#xff0c;使得开发者…

Qt/自定义控件的封装

新建文件&#xff0c;选择Qt设计师界面类 创建空界面 这是自己控件封装的文件&#xff0c;双击跳转到设计界面进行设计 跳转到其他的ui界面&#xff0c;创建一个widget 右键&#xff0c;选择提升为 在提升的类名称输入刚刚创建的类名&#xff0c;添加后选择提升&#xff0c;勾选…