Image Fusion via Vision-Language Model【文献阅读】

news2024/12/26 11:38:37

阅读目录

    • 文献阅读
    • Abstract
    • Introduction
    • 3. Method
      • 3.1. Problem Overview
      • 3.2. Fusion via Vision-Language Model
    • 4. Vision-Language Fusion Datasets
    • 5. Experiment
      • 5.1Infrared and Visible Image Fusion
    • 6. Conclusion
    • 个人总结


文献阅读

在这里插入图片描述
原文下载:https://arxiv.org/abs/2402.02235


Abstract

图像融合从多源图像中整合必要信息成单张图像,强调显著性的结构和纹理,精炼不足的区域。现有的方法主要是识别像素级和语义视觉特征。然而在深度语义信息之外的文本信息探索不足。因此,我们定义了一个创新的范式佳作FILM(Fusion via vIsion-Language
Model),首先利用提取不同原图像的文本信息去指导融合。输入的图像首先处理后去生成语义提示,然后喂到ChatGPT中去获得丰富的语义描述。通过交叉注意力这些描述被用于融合文本域中用于指导源图像关键视觉特征的提取,导致由文本语义信息指导更加深层的上下文理解。最终的融合图像由视觉特征解码器生成。这种范式在4种融合任务中得到了满意的结果:红外与可见光、医学图像、多曝光、多聚焦。我们也提出了一个视觉语言数据集包括基于ChatGPT的段落描述,用于在4个融合任务的8个图像融合数据集,促进了基于视觉语言模型的视觉研究。代码即将开源。


Introduction

因此,本文我们提出了创新的算法叫做Image Fusion via VIsion-Language Model (FILM)。这个方法首次将大语言模型的能力整合到图像融合中,利用从文本数据导出的语义理解来指导和增强融合图像的视觉特征。我们方法包含3部分,文本特征融合、语言指导视觉特征融合,语言特征解码器。工作流如下图1所示,我们的共享可以总结成以下几点:

  • 在图像融合中提出了一个创新性的范式,据我们所知,这是第一个由语言模型驱动的文本指导实现来指导图像融合算法。这种方法有助于理解更深层次的文本语义信息,促进从各种源图像中提取和融合的优势。
  • 在4中任务上我们的模型实现了令人满意的结果,在不同应用场景上证明了其有效性。
  • 我们引入了一系列用于图像融合的视觉语言基准数据集,涵盖跨四个融合任务的八个数据集。这些数据集包含了用ChatGPT模型来手动细化的提示定制,以及有ChatGPT生成配对的文本描述,为了促进在图像融合中使用视觉语言模型的后续研究。

在这里插入图片描述
图1:FILM的工作流,输入的图像首先为ChatGPT模型生成提示,然后由它生成详细的文本描述。这些描述通过冻结的BLIP2模型得到融合的文本特征。然后这些文本特征被融合,通过交叉注意力指导视觉特征的提取和融合,通过文本的语义信息的增强上下文的理解。最终,融合图像被图像的Encoder输出。

总结一下:基于ChatGPT生成详细的文本描述,得到文本特征后通过交叉注意力来加强视觉特征,用于挖掘深层次的文本语义信息,然后将融合特征经过图像的解码器得到融合图像。


3. Method

输入的图像对为I_1和I_2,可以是红外与可见光、医学图像、多曝光图像和多聚焦图像。算法最终输出的融合图像记作F。这一节我们将对FILM进行容易理解的描述,I_F=FILM(I_1,I_2),解释它的工作流和设计细节。训练的细节,包括损失函数,都将被讨论。

3.1. Problem Overview

图1和图2是简要和细节的FILM范式工作流,算法可以分为3部分:文本特征融合、语言指导的视觉特征融合和视觉特征解码,分别对应图2的第一、二、三栏,分别用T(·) V(·) D(·)表示。

在这里插入图片描述
图2:FILM的工作流,包含三部分:文本范式生成、文本特征融合、通过交叉注意力指导的视觉特征融合和视觉特征解码器,分别为第一列、第二列和第三列。FILM算法包含2个输入,由文本特征融合单元T进行初始化的处理。这一部分的提示生成包含图像描述、密集描述和分割一切,通过ChatGPT来生成文本描述。文本描述通过BLIP2的文本编码器来编码,随后将融合他们。语言指导的视觉特征融合V利用融合的文本特征通过交叉注意力去指导原图像视觉特征的提取。这个过程识别并整合融合图像的显著性方面和优势。最终,融合图像F被视觉特征解码器D输出,解码融合的视觉特征到图像。每个部分的细节将分开解读。由于内容的约束,更多的网络细节可以去补充材料查看。

3.2. Fusion via Vision-Language Model

组成1:文本特征融合
文本特征融合部分,原图像{I_1, I_2}作为输入,得到融合文本特征。最初,收到文献的启发,我们将图像输入达BLIP2、GRIT和Segment Anything模型去提取图像的语义信息从整体到细粒度,作为图像描述、密集描述和语义掩码。随后将3中提示输入的ChatGPT模型来生成与原图像I_1和I_2匹配的文本描述T1和T2。我们然后输入T1和T2到冻结BLIP2模型的文本编码器,获得对应的文本特征。最终,将2个文本特征拼接后得到融合的文本特征。更多特征提示和文本生成请参考Sec 4.

组成2:语言指导的视觉特征融合
语言指导的视觉融合部分,通过文本特征来指导从原图像中提取视觉特征。最终,源图像I_1和I_2喂到图像的编码器中得到浅层的视觉特征。图像编码器包含Restormer块和CNN,关注与全局和局部的视觉表达同时保留计算效率和高效的特征提取。随后,浅层的特征被喂到交叉注意力模块,用于融合文本特征去指导视觉特征的提取,更多的关注希望在融合图像中保留原图像的各个部分。K和V由对应的视觉特征提供,Q由融合的文本特征提供。值得注意的是交叉注意力中的前馈神经网络是有Restormer块实现的。经过M次交叉注意力后,文本特征指导的视觉特征被得到,随后,在通道维度上进行拼接后得到融合的视觉特征。

组成3:视觉特征解码
最终将融合的视觉特征输入到一个解码器,包含N个Restormer和CNN模块,输入的融合图像定义为I_F,代表最终由FILM的输出。

在这里插入图片描述
图3:VLF数据集可视化,处理和代表性数据可视化


4. Vision-Language Fusion Datasets

这一部分,将要介绍提出的Vision-Language Fusion(VLF)dataset,包含提示生成,段落描述输出和呈现代表性的可视化。

总览:考虑到各种视觉-语言模型的高计算开销,为了促进后续基于视觉语言模型的图像融合研究,我们提出了VLF数据集。数据集包含有ChatGPT生成的成对的段落描述,包含8个广泛使用的图像融合训练和测试集。MSRS、M3FD、RoadScene(IVF)the Harvard dataset 医学图像(MIF), the RealMFF [69] and Lytro [34] datasets 多聚焦图像融合(MFF), 和the SICE [3] and MEFB [71] datasets 多曝光图像融合(MEF) 。

提示生成:每一个部分的文本段落生成模型如图3。首先收到BLIP2、GRIT、Segment Anything启发,输出图像描述、密集描述和语义掩码。分别提供了一个句子的描述,对象级的信息和语义掩码,用于输入和代表性的语义信息范围,从粗粒度到细粒度。

生成段落描述:随后,生成的语义提示和成对的图像作为输入到ChatGPT中生成段落描述,用于指导随后的融合任务。

统计信息:数据集包含70040段落描述,平均每段描述至少包含7个句子和186个词。在图3中有多模态、多聚焦、多曝光的例子,更多的数据集细节可以在补充材料中查找。


5. Experiment

这一部分将证明FILM在不同融合任务上的性能,表明它的优越性。由于篇幅限制,更多的细节超参选择和视觉结果呈现在补充材料中。

损失函数,总的损失函数如下:
在这里插入图片描述
α1和α2作为调节因子。具体损失函数如下所示:
在这里插入图片描述
实验细节:RTX 3090,训练300轮使用Adam优化器,初始学习率为1e-4每50轮下降0.5,Batchsize设为16,采用Restormer块作为语言指导的视觉编码器和解码器,8个注意力头和64维度,M和N分别为编码、解码器的数量,分别为2和3。

指标:使用6个人指标来评估性能:EN、SD、SF、AG和VIF和Q_abf,更高的指标表明更好的融合质量,更多的信息可以参考30。

5.1Infrared and Visible Image Fusion

红外与可见光实验包含MSRS、M3FD和RoadScene数据集,如文献20和82那样。MSRS:1083对训练集和361对测试集。在M3FD和RoadScene上无需微调,进一步验证FILM的通用性。对比的SOTA方法包括:SDNet、TarDAL、DeFusion、MetaFusion、CDDFuse、LRRNet、MURF、DDFM和SegMIF。

与SOTA方法做对比:如图4,FILM成功整合了红外热辐射信息以及到细节的纹理特征上。
在这里插入图片描述

利用文本特征和先验知识,融合结果增强了在低光照条件下的目标的可见性,使其纹理和轮廓更加清晰,并且减小伪影。定量实验如表1,我们方法表明实验性能在所有指标上都是最好的,证实了它在不同环境下的传感器和目标种类上的适应性。因此,FILM证明了它能够很好的保留原图像互补和丰富的信息,生成满足人类视觉的图像。
在这里插入图片描述

消融实验:为了在提出的方法中有效利用每一个模态,构建了消融实验在RoadScene的测试集上,结果如表5。实验1,移除了文本信息,仅使用视觉特征用于融合,消除文本和图像间的教程注意力,展示FILM中文本引导的特征提取和融合效果。增加Restormer 快的数量,保留总的模型参数接近原始模型。(没看见这个消融啊)实验二-四部分,我们测试了文本语义提示由整体到细粒度的提示,包括图像描述IC,密集描述DC和语言掩码SM。实验2我们直接把原始图像喂到ChatGPT中。通过手动提供提示,GPT生成图像总的描述,用文本输入用作图像融合。这些研究涉及绕开的提示,从IC、DC和SM,在实验3中仅将IC输入到GPT中,实验4,IC和DC共同输入到GPT中,揭示了从粗粒度到细粒度不同方面描述的重要性。最终在实验五,从图像中提取到IC、DC和SM后直接拼接三种描述不输入到GPT中。这个证明了GPT整合文本信息和有效融合的能力。消融实验证明了依赖与不同描述的互补信息,以及GPT的总结能力,我们的实验实现了最优的融合性能,验证了FILM设置的合理性。

在这里插入图片描述


6. Conclusion

本研究接近了图像融合中的关键技术:对于视觉特征之外的语义特征利用不足。我们第一次创新性的提出了视觉语言模型FILM,利用原图像的文本描述通过大语言模型来指导融合,能够更加全面的理解图像内容。FILM证明了在不同图像融合任务上的处理结果,包括红外与可见光、医学图像、多曝光和多聚焦图像融合。另外,我们提出了一个新的基准视觉-语言数据集,包括基于ChatGPT对8个数据集生成的描述。我们希望我们的研究能够在大语言模型的图像融合中有新的启示。


个人总结

  1. 本文以ChatGPT和不同的图像信息(文本描述,密集描述,语义信息),用于挖掘深层次的文本语义信息,文本特征编码通过交叉注意力来增强视觉特征,重建融合图像。能够有效在4个不同的融合任务上具有较好的实验效果。本文还针对4个任务提8个数据集上提出了视觉语言数据集(图像具有ChatGPT生成的文本描述段落)。
  2. 文本语义已经在成为增强图像融合视觉效果的一个趋势,后面会开源大量的具有文本描述的图像融合数据集,如何有效利用文本段落描述是我们未来研究的一个关键点?
  3. 还有一篇文章,可以通过控制文本输入来得到不同区域的视觉增强效果,如果利用文本语义特征显得特别重要。
  4. 未来的自己,不仅仅要多看论文,还要多读,多理解多思考,重要的是多跑代码,理解它,然后再思考自己的研究点,不要盲目去做。Baseline特别重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1484717.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Web开发学习-HTML

第一天 固定结构 如何注释&#xff1a;vs code中使用ctrl/可以达到注释这一行的效果&#xff0c;同时再次按下ctrl/&#xff0c;可以取消注释。 HTML标签的结构 例如&#xff1a;<strong>字体加粗</strong>这个就是双标签&#xff0c;<br>换行标签&#xff…

2023年09月CCF-GESP编程能力等级认证Scratch图形化编程四级真题解析

一、单选题(共15题,共30分) 第1题 人们所使用的手机上安装的 App 通常指的是( )。 A:一款操作系统 B:一款应用软件 C:一种通话设备 D:以上都不对 答案:B 第2题 下列流程图的输出结果是?( ) A:9 B:7 C:5 D:11 答案:A 第3题 默认小猫角色,执行下列程序…

[机缘参悟-160] :人的感知系统是及其有限的,从电磁波的频谱、声波的声谱,看人类只看感知到物质世界的一小部分,无法感知到全部真相

目录 一、人自身是如何感知物质世界的&#xff1f; 1.1 五官 1.2 关于视觉、光、电磁波 1.2.1 视觉系统 1.2.2 感光细胞 ​编辑 1.2.3 光波与人眼的光波范围 1.2.4 电磁波 1.2.5 通过科学仪器和技术可以拓展人对电磁波的感知 1.2.6 太阳光的光谱 1.2.6 光不仅仅用于…

微信小程序云开发教程——墨刀原型工具入门(添加交互事件)

引言 作为一个小白&#xff0c;小北要怎么在短时间内快速学会微信小程序原型设计&#xff1f; “时间紧&#xff0c;任务重”&#xff0c;这意味着学习时必须把握微信小程序原型设计中的重点、难点&#xff0c;而非面面俱到。 要在短时间内理解、掌握一个工具的使用&#xf…

13-微服务初探-自研微服务框架

微服务初探 1. 架构变迁之路 1.1 单体架构 互联网早期&#xff0c;一般的网站应用流量较小&#xff0c;只需要一个应用&#xff0c;将所有的功能代码都部署在一起就可以&#xff0c;这样可以减少开发&#xff0c;部署和维护的成本。 比如说一个电商系统&#xff0c;里面包含…

Linux网络编程——socket 通信基础

Linux网络编程——socket 通信基础 1. socket 介绍2. 字节序2.1 简介2.2 字节序举例2.3 字节序转换函数 3. socket 地址3.1 通用 socket 地址3.2 专用 socket 地址 4. IP地址转换&#xff08;字符串ip -> 整数&#xff0c;主机、网络字节序的转换 &#xff09;5. TCP 通信流…

Linux线程【控制】

目录 前言&#xff1a; 正文&#xff1a; 1、线程知识补充 1.1、线程私有资源 1.2线程的共享资源 1.3原生线程库 2. 线程控制接口 2.1线程创建 2.1.1一批线程 2.2线程等…

Spring学习笔记(六)利用Spring的jdbc实现学生管理系统的用户登录功能

一、案例分析 本案例要求学生在控制台输入用户名密码&#xff0c;如果用户账号密码正确则显示用户所属班级&#xff0c;如果登录失败则显示登录失败。 &#xff08;1&#xff09;为了存储学生信息&#xff0c;需要创建一个数据库。 &#xff08;2&#xff09;为了程序连接数…

python 基础知识点(蓝桥杯python科目个人复习计划56)

今日复习内容&#xff1a;做题 例题1&#xff1a;最小的或运算 问题描述&#xff1a;给定整数a,b&#xff0c;求最小的整数x&#xff0c;满足a|x b|x&#xff0c;其中|表示或运算。 输入格式&#xff1a; 第一行包括两个正整数a&#xff0c;b&#xff1b; 输出格式&#…

VBA数据库解决方案第九讲:打开数据库记录集,所得数据回填

《VBA数据库解决方案》教程&#xff08;版权10090845&#xff09;是我推出的第二套教程&#xff0c;目前已经是第二版修订了。这套教程定位于中级&#xff0c;是学完字典后的另一个专题讲解。数据库是数据处理的利器&#xff0c;教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…

【Vue3】全局切换字体大小

VueUse 先安装VueUse <template><header><div class"left">left</div><div class"center">center</div><div class"right">right</div></header><div><button click"cha…

对象变更记录objectlog工具(持续跟新)

文章目录 前言演示代码参考仓库 前言 对于重要的一些数据&#xff0c;我们需要记录一条记录的所有版本变化过程&#xff0c;做到持续追踪&#xff0c;为后续问题追踪提供思路。 演示代码 下面我们通过一段代码演示代码&#xff0c;展示如何自动将枚举字段&#xff0c;主键关…

计算机网络-下一代互联网

1.IPV6概念&#xff1a; 下一代网络NGI&#xff0c;目前是第6版。IPV6分组有1个固定头部和n个扩展头部&#xff08;任选&#xff09;以及上层协议的负载组成。如下图&#xff1a; 2.IPV6固定头部&#xff1a;各字段解释含义。 版本0110&#xff0c;4位&#xff0c;代表IPV6通…

Unity TMP文字移动效果

前言 看见很多游戏有很特殊的波浪形文字效果&#xff0c;于是来尝试一下控制TMP文字顶点的方式达到类似效果。 原理 挂载tmp text&#xff0c;在里面随便放入非空格字符。 tmp text组件开放了textInfo接口&#xff0c;也就是GetComponent<TextMeshProUGUI>().textInfo…

使用R语言进行Logistic回归分析(2)

一、数据集描述&#xff0c;问题要求 下表是40位肺癌病人的生存资料&#xff0c;X1表示生活行为能力平分&#xff08;1到100&#xff09;&#xff0c;X2为病人的年龄&#xff08;年&#xff09;&#xff0c;X3由诊断到进入研究的时间&#xff08;月&#xff09;&#xff0c;X4…

VMwareWorkstation17.0虚拟机搭建WindowsXP虚拟机(完整安装步骤详细图文教程)

VMwareWorkstation17.0虚拟机搭建WindowsXP虚拟机&#xff08;完整安装步骤详细图文教程&#xff09; 一、Windows XP1.Windows XP简介2.Windows XP 的下载地址 二、配置 Windows XP 虚拟机运行环境1.新建虚拟机2.选择类型配置3.插入WinXP光盘映像文件(ISO)4.选择操作系统5.命名…

【MCAL】TC397+EB-tresos之CAN配置实战 - (CAN/CANFD)

本篇文章介绍了在TC397平台使用EB-tresos对CAN驱动模块进行配置的实战过程,不仅介绍了标准CAN的发送与接收&#xff0c;还介绍了CANFD的实现与调试以及扩展帧的使用。M_CAN是德国博世公司开发的IP&#xff0c;因为英飞凌的芯片完整的集成了这个IP&#xff0c;所以整体的配置都比…

【电路笔记】-RC网络-时间常数

时间常数 文章目录 时间常数1、概述2、RC 电路的时间常数3、示例14、示例25、RC瞬态放电曲线6、示例37、总结Tau τ \tau τ 是 RC 电路在阶跃变化输入条件下从一种稳态条件变为另一种稳态条件所需的时间常数。 1、概述 Tau,符号 τ \tau τ,是电气和电子计算中使用的希腊字…

C++_数据结构_数据的输入

作用 用于从键盘获取数据 关键字 cin >> 变量示例

Jenkins的Pipeline概念

文章目录 Pipeline什么是Jenkins Pipeline声明式和脚本式Pipeline语法为何使用PipelinePipeline概念PipelineNodeStageStep Pipeline语法概述声明式Pipeline脚本式Pipeline Pipeline示例 参考 Pipeline 什么是Jenkins Pipeline Jenkins Pipeline是一套插件&#xff0c;它支持…