浅谈MySQL的B树索引与索引优化

news2024/11/17 7:20:34

MySQL的MyISAM、InnoDB引擎默认均使用B+树索引(查询时都显示为“BTREE”),本文讨论两个问题:

  • 为什么MySQL等主流数据库选择B+树的索引结构?
  • 如何基于索引结构,理解常见的MySQL索引优化思路?

为什么索引无法全部装入内存

索引结构的选择基于这样一个性质:大数据量时,索引无法全部装入内存

为什么索引无法全部装入内存?假设使用树结构组织索引,简单估算一下:

  • 假设单个索引节点12B,1000w个数据行,unique索引,则叶子节点共占约100MB,整棵树最多200MB。
  • 假设一行数据占用200B,则数据共占约2G。

假设索引存储在内存中。也就是说,每在物理盘上保存2G的数据,就要占用200MB的内存,索引:数据的占用比约为1/10。1/10的占用比算不算大呢?物理盘比内存廉价的多,以一台内存16G硬盘1T的服务器为例,如果要存满1T的硬盘,至少需要100G的内存,远大于16G。

考虑到一个表上可能有多个索引、联合索引、数据行占用更小等情况,实际的占用比通常大于1/10,某些时候能达到1/3。在基于索引的存储架构中,索引:数据的占用比过高,因此,索引无法全部装入内存

其他结构的问题

由于无法装入内存,则必然依赖磁盘(或SSD)存储。而内存的读写速度是磁盘的成千上万倍(与具体实现有关),因此,核心问题是“如何减少磁盘读写次数”。

首先不考虑页表机制,假设每次读、写都直接穿透到磁盘,那么:

  • 线性结构:读/写平均O(n)次
  • 二叉搜索树(BST):读/写平均O(log2(n))次;如果树不平衡,则最差读/写O(n)次
  • 自平衡二叉搜索树(AVL):在BST的基础上加入了自平衡算法,读/写最大O(log2(n))次
  • 红黑树(RBT):另一种自平衡的查找树,读/写最大O(log2(n))次

BST、AVL、RBT很好的将读写次数从O(n)优化到O(log2(n));其中,AVL和RBT都比BST多了自平衡的功能,将读写次数降到最大O(log2(n))。

假设使用自增主键,则主键本身是有序的,树结构的读写次数能够优化到树高,树高越低读写次数越少;自平衡保证了树结构的稳定。如果想进一步优化,可以引入B树和B+树。

B树解决了什么问题

很多文章将B树误称为B-(减)树,这可能是对其英文名“B-Tree”的误解(更有甚者,将B树称为二叉树或二叉搜索树)。特别是与B+树一起讲的时候。想当然的认为有B+(加)树就有B-(减)树,实际上B+树的英文名是“B±Tree”。

如果抛开维护操作,那么B树就像一棵“m叉搜索树”(m是子树的最大个数),时间复杂度为O(logm(n))。然而,B树设计了一种高效简单的维护操作,使B树的深度维持在约log(ceil(m/2))(n)~logm(n)之间,大大降低树高

在这里插入图片描述

再次强调:

不要纠结于时间复杂度,与单纯的算法不同,磁盘IO次数才是更大的影响因素。读者可以推导看看,B树与AVL的时间复杂度是相同的,但由于B树的层数少,磁盘IO次数少,实践中B树的性能要优于AVL等二叉树。

同二叉搜索树类似,每个节点存储了多个key和子树,子树与key按顺序排列。

页表的目的是扩展内存+加速磁盘读写。一个页(Page)通常4K(等于磁盘数据块block的大小,见inode与block的分析),从磁盘读写的角度出发,操作系统每次以页为单位将内容从磁盘加载到内存(以摊分寻道成本),修改页后,再择期将该页写回磁盘。考虑到页表的良好性质,可以使每个节点的大小约等于一个页(使m非常大),这每次加载的一个页就能完整覆盖一个节点,以便选择下一层子树;对子树同理。对于页表来说,AVL(或RBT)相当于1个key+2个子树的B树,由于逻辑上相邻的节点,物理上通常不相邻,因此,读入一个4k页,页面内绝大部分空间都将是无效数据。

假设key、子树节点指针均占用4B,则B树节点最大m * (4 + 4) = 8m B;页面大小4KB。则m = 4 * 1024 / 8 = 512,一个512叉的B树,1000w的数据,深度最大 log(512/2)(10^7) = 3.02 ~= 4。对比二叉树如AVL的深度为log(2)(10^7) = 23.25 ~= 24,相差了5倍以上。震惊!B树索引深度竟然如此!

另外,B树对局部性原理非常友好。如果key比较小(比如上面4B的自增key),则除了页表的加成,缓存还能进一步预读加速。美滋滋~

B+树解决了什么问题

B树的剩余问题

然而,如果要实际应用到数据库的索引中,B树还有一些问题:

  1. 未定位数据行
  2. 无法处理范围查询

问题1

数据表的记录有多个字段,仅仅定位到主键是不够的,还需要定位到数据行。有3个方案解决:

  1. 直接将key对应的数据行(可能对应多行)存储在节点中。
  2. 数据行单独存储;节点中增加一个字段,定位key对应数据行的位置。
  3. 修改key与子树的判断逻辑,使子树大于等于上一key小于下一key,最终所有访问都将落于叶子节点;叶子节点中直接存储数据行或数据行的位置。

方案1中,数据行通常非常大,存储数据行将减少页面中的子树个数,m减小树高增大。假设数据行占用200B,可忽略组织B树的指针,则新的m = 4 * 1024 / 200 = 20.48 ~= 21,深度最大 log(21/2)(10^7) ~= 7。增加了一倍以上的IO,不考虑。

方案2中,节点增加了一个字段。假设是4B的指针,则新的m = 4 * 1024 / 12 = 341.33 ~= 341,深度最大 log(341/2)(10^7) = 3.14 ~= 4。与3差别不大,可以考虑。

方案3的节点m与深度不变,但时间复杂度变为稳定的O(logm(n))。考虑。

问题2

实际业务中,范围查询的频率非常高,B树只能定位到一个索引位置(可能对应多行),很难处理范围查询。给出2种方案:

  1. 不改动:查询的时候先查到左界,再查到右界,然后DFS(或BFS)遍历左界、右界之间的节点。
  2. 在“问题1-方案3”的基础上,由于所有数据行都存储在叶子节点,B树的叶子节点本身也是有序的,可以增加一个指针,指向当前叶子节点按主键顺序的下一叶子节点;查询时先查到左界,再查到右界,然后从左界到有界线性遍历。

乍一看感觉方案1比方案2好——时间复杂度和常数项都一样,方案1还不需要改动。但是别忘了局部性原理,不管节点中存储的是数据行还是数据行位置,方案2的好处在于,叶子节点连续存储,对页表和缓存友好。而方案1则面临节点逻辑相邻、物理分离的缺点。

引出B+树

综上,问题1的方案2与问题2的方案1可整合为一种方案(基于B树的索引),问题1的方案3与问题2的方案2可整合为一种(基于B+树的索引)。实际上,数据库、文件系统有些采用了B树,有些采用B+树。

由于某些猴子暂未明白的原因,包括MySQL在内的主流数据库多选择了B+树。即:
在这里插入图片描述

主要变动如上所述:

  • 修改key与子树的组织逻辑,将索引访问都落到叶子节点
  • 按顺序将叶子节点串起来(方便范围查询)

B树和B+树的增、删、查过程

B树的增删过程暂时可参考从B树、B+树、B*树谈到R 树的“6、B树的插入、删除操作”小节,B+树的增删同理。此处暂不赘述。

Mysql索引优化

根据B+树的性质,很容易理解各种常见的MySQL索引优化思路。

暂不考虑不同引擎之间的区别。

优先使用自增key作为主键

前面的分析中,假设用4B的自增key作为索引,则m可达到512,层高仅有3。使用自增的key有两个好处:

  1. 自增key一般为int等整数型,key比较紧凑,这样m可以非常大,而且索引占用空间小。最极端的例子,如果使用50B的varchar(包括长度),那么m = 4 * 1024 / 54m = 75.85 ~= 76,深度最大 log(76/2)(10^7) = 4.43 ~= 5,再加上cache缺失、字符串比较的成本,时间成本增加较大。同时,key由4B增长到50B,整棵索引树的空间占用增长也是极为恐怖的(如果二级索引使用主键定位数据行,则空间增长更加严重)。
  2. 自增的性质使得新数据行的插入请求必然落到索引树的最右侧,发生节点分裂的频率较低,理想情况下,索引树可以达到“满”的状态。索引树满,一方面层高更低,一方面删除节点时发生节点合并的频率也较低。

优化经历:

猴子曾使用varchar(100)的列做过主键,存储containerId,过了3、4天100G的数据库就满了,DBA小姐姐邮件里委婉表示了对我的鄙视。。。之后增加了自增列作为主键,containerId作为unique的二级索引,时间、空间优化效果相当显著。

最左前缀匹配

索引可以简单如一个列(a),也可以复杂如多个列(a, b, c, d),即联合索引。如果是联合索引,那么key也由多个列组成,同时,索引只能用于查找key是否存在(相等),遇到范围查询(>、<、between、like左匹配)等就不能进一步匹配了,后续退化为线性查找。因此,列的排列顺序决定了可命中索引的列数。

如有索引(a, b, c, d),查询条件a = 1 and b = 2 and c > 3 and d = 4,则会在每个节点依次命中a、b、c,无法命中d。也就是最左前缀匹配原则。

=、in自动优化顺序

不需要考虑=、in等的顺序,mysql会自动优化这些条件的顺序,以匹配尽可能多的索引列。

如有索引(a, b, c, d),查询条件c > 3 and b = 2 and a = 1 and d < 4a = 1 and c > 3 and b = 2 and d < 4等顺序都是可以的,MySQL会自动优化为a = 1 and b = 2 and c > 3 and d < 4,依次命中a、b、c。

索引列不能参与计算

有索引列参与计算的查询条件对索引不友好(甚至无法使用索引),如from_unixtime(create_time) = '2014-05-29'

原因很简单,如何在节点中查找到对应key?如果线性扫描,则每次都需要重新计算,成本太高;如果二分查找,则需要针对from_unixtime方法确定大小关系。

因此,索引列不能参与计算。上述from_unixtime(create_time) = '2014-05-29'语句应该写成create_time = unix_timestamp('2014-05-29')

能扩展就不要新建索引

如果已有索引(a),想建立索引(a, b),尽量选择修改索引(a)为索引(a, b)。

新建索引的成本很容易理解。而基于索引(a)修改为索引(a, b)的话,MySQL可以直接在索引a的B+树上,经过分裂、合并等修改为索引(a, b)。

不需要建立前缀有包含关系的索引

如果已有索引(a, b),则不需要再建立索引(a),但是如果有必要,则仍然需考虑建立索引(b)。

选择区分度高的列作索引

很容易理解。如,用性别作索引,那么索引仅能将1000w行数据划分为两部分(如500w男,500w女),索引几乎无效。

区分度的公式是count(distinct <col>) / count(*),表示字段不重复的比例,比例越大区分度越好。唯一键的区分度是1,而一些状态、性别字段可能在大数据面前的区分度趋近于0。

这个值很难确定,一般需要join的字段要求是0.1以上,即平均1条扫描10条记录。


参考:

  • 从B树、B+树、B*树谈到R 树
  • MySQL索引原理及慢查询优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1479497.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

火锅底料加工厂污废水如何处理达标排放

火锅底料加工厂作为食品加工行业的一员&#xff0c;其生产过程中不可避免地会产生大量的污废水。为了保护环境和维护公共健康&#xff0c;火锅底料加工厂应当采取措施对污废水进行处理&#xff0c;使其达到国家相关排放标准。那么&#xff0c;火锅底料加工厂污废水该如何处理才…

ffmpeg单张图片生成固定时长的视频

ffmpeg -r 25 -f image2 -loop 1 -i fps_1.jpg -vcodec libx264 -pix_fmt yuv420p -s 1080*1920 -r 25 -t 30 -y fps.mp4这个命令将 fps_1.jpg 图片转换为一个 30 秒长的视频&#xff0c;分辨率为 1920x1080&#xff0c;帧率为 25 帧/秒&#xff0c;并使用 libx264 编码器进行压…

数据中心GPU集群高性能组网技术分析

数据中心GPU集群组网技术是指将多个GPU设备连接在一起&#xff0c;形成一个高性能计算的集群系统。通过集群组网技术&#xff0c;可以实现多个GPU设备之间的协同计算&#xff0c;提供更大规模的计算能力&#xff0c;适用于需要大规模并行计算的应用场景。 常用的组网技术&…

HTML5+CSS3小实例:环绕小球弹性loading动画

实例:环绕小球弹性loading动画 技术栈:HTML+CSS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"><head><meta charset="UTF-8" /><meta http-equiv="X-UA-Compatible" content="IE=edge&quo…

C# WPF编程-创建项目

1.创建新项目 选择“WPF应用程序”》“下一步” 2. 设置项目 设置项目名称&#xff0c;保存位置等参数>下一步 3.选择框架 4.项目创建成功 5.运行项目

Failed to build tree: parent link [base_link] of joint [lidar_joint] not found

参考&#xff1a; Failed to build tree: parent link [base_link] of joint 在古月居gazebo 的基础教程里&#xff0c;运行古月居的mbot的launch文件报错&#xff0c;小机器人不出现。 主要原因是提供的xacro文件的宏定义没有放在xacro的命名空间。 解决&#xff1a; 将<mb…

网络编程第二天

1.基于TCP的通信(面向连接的通信) 服务器代码实现&#xff1a; #include <myhead.h> #define IP "192.168.126.91" #define PORT 9999 int main(int argc, const char *argv[]) {//1、创建套接字int sfd-1;if((sfdsocket(AF_INET,SOCK_STREAM,0))-1){perror(…

ROS 2基础概念#2:节点(Node)| ROS 2学习笔记

ROS 2节点简介 节点是执行计算的进程。节点组合在一起形成一个图&#xff08;graph&#xff09;&#xff0c;并使用主题&#xff08;topic&#xff09;、服务&#xff08;service&#xff09;和参数服务器&#xff08;paramter server&#xff09;相互通信。这些节点旨在以细粒…

Ps:路径面板

Ps菜单&#xff1a;窗口/路径 Window/Paths “路径”面板 Paths Panel提供了一系列功能&#xff0c;使用户能够创建、编辑、保存和利用路径。 ◆ ◆ ◆ 路径分类 在“路径”面板上的路径可分为五大类。 常规路径 Saved Path 也称“已保存的路径”&#xff0c;指的是已经存储在…

【三维重建】【SLAM】SplaTAM:基于3D高斯的密集RGB-D SLAM

题目&#xff1a;SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM 地址&#xff1a;spla-tam.github.io 机构&#xff1a;CMU&#xff08;卡内基梅隆大学&#xff09;、MIT&#xff08;美国麻省理工&#xff09; 总结&#xff1a;SplaTAM&#xff0c;一个新…

MyBatis 学习(三)之 MyBatis 全局配置文件

目录 1 MyBatis 全局配置文件 2 properties 元素 3 setting 设置 4 typeAlianses 别名处理器 5 typeHandler 类型处理器 6 objectFacotry 对象工厂&#xff08;了解&#xff09; 7 plugins 插件&#xff08;了解&#xff09; 8 environments 运行环境 9 databaseIdPro…

如何对酒店开展科学的定岗定编——以酒店健身房、娱乐房为例

近年来&#xff0c;随着旅游行业的快速发展&#xff0c;也带动了酒店业的兴盛。酒店的经营效益不仅受益于旅游业&#xff0c;同时也受制于旅游行业。由于旅游业存在明显的季节性差异&#xff0c;旅游旺季客流量多、淡季客流量少&#xff0c;造成人员忙闲不均的问题。酒店行业也…

怎么恢复删除的文件?6种有效的数据恢复方法汇总!

怎么才能恢复被删掉的数据啊&#xff1f;现在都是数字化时代了&#xff0c;我们的电脑里装了好多重要数据&#xff0c;一旦丢了&#xff0c;可是会给我们的工作和生活带来极大的麻烦啊。所以&#xff0c;学几招有效的电脑数据恢复方法是挺有必要的。下面&#xff0c;我就给大家…

C# 高阶语法 —— Winfrom链接SQL数据库的存储过程

存储过程在应用程序端的使用的优点 1 如果sql语句直接写在客户端&#xff0c;以一个字符串的形式体现的&#xff0c;提示不友好&#xff0c;会导致效率降低 2 sql语句写在客户端&#xff0c;可以利用sql注入进行攻击&#xff0c;为了安全性&#xff0c;可以把sql封装在…

出现 ‘vue‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件的解决方法(图文界面)

目录 前言1. 问题所示2. 原理分析3. 解决方法前言 由于Java转全栈,对此前端的细节点都比他人更加注意,所以此处记录更有用的信息!(小白都能看懂) 1. 问题所示 出现如下问题: F:\vue_project>vue -version vue 不是内部或外部命令,也不是可运行的程序 或批处理文件…

CUDA C:查看GPU设备信息

相关阅读 CUDA Chttps://blog.csdn.net/weixin_45791458/category_12530616.html?spm1001.2014.3001.5482 了解自己设备的性能是很有必要的&#xff0c;为此CUDA 运行时(runtime)API给用户也提供了一些查询设备信息的函数&#xff0c;下面的函数用于查看GPU设备的一切信息。 …

挑战30天学完Python:Day29 API开发

&#x1f389; 本系列为Python基础学习&#xff0c;原稿来源于 30-Days-Of-Python 英文项目&#xff0c;大奇主要是对其本地化翻译、逐条验证和补充&#xff0c;想通过30天完成正儿八经的系统化实践。此系列适合零基础同学&#xff0c;或仅了解Python一点知识&#xff0c;但又没…

如何在Node.js中使用定时器

在Node.js中使用定时器是一项常见且重要的任务&#xff0c;特别是在需要执行定时任务或者轮询操作的情况下。Node.js提供了多种方式来实现定时器功能&#xff0c;包括setTimeout、setInterval和setImmediate等方法。本篇博客将介绍如何在Node.js中使用这些定时器&#xff0c;并…

【STM32】STM32学习笔记-独立看门狗和窗口看门狗(47)

00. 目录 文章目录 00. 目录01. WDG概述02. 独立看门狗相关API2.1 IWDG_WriteAccessCmd2.2 IWDG_SetPrescaler2.3 IWDG_SetReload2.4 IWDG_ReloadCounter2.5 IWDG_Enable2.6 IWDG_GetFlagStatus2.7 RCC_GetFlagStatus 03. 独立看门狗接线图04. 独立看门狗程序示例105. 独立看门…

mysql缓存机制面试题,学海无涯

二、我们先来看看这份笔记到底有什么 1、先把kubernetes跑起来&#xff08;先跑起来创建kubernetes集群部署应用访问应用Scale应用滚动更新&#xff09; 2、重要概念 3、部署kubernetes Cluster&#xff08;安装docker安装 kubelet.kubeadm和 kubectll用kubeadm 创建cluster&a…