STM32串口通信(发送与接收数据)

news2024/11/19 17:30:13

文章目录

  • 前言
  • 一、介绍部分
    • 通信接口
      • 术语解释
    • 串口通信简介
    • 硬件电路
    • 电平标准
    • 串口参数
    • 串口时序
    • USART简介
      • USART框图
      • USRAT基本结构
      • 数据帧
      • 起始位检测
      • 波特率发生器
      • CH340G
  • 二、实例部分
    • 使用串口发送数据
    • 接线图
      • 代码实现
      • 重定向printf需要勾上Use MicroLIB
      • 中文不乱码方法
    • 串口的发送与接收数据
      • 线路连接与上面一致
      • 代码实现


前言

串口通信(Serial Communications)的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。本文主要接收使用串口发送接收数据,波特率设置,串口的基本时序等。


一、介绍部分

通信接口

在这里插入图片描述

术语解释

在这里插入图片描述

串口通信简介

在这里插入图片描述

硬件电路

在这里插入图片描述

电平标准

在这里插入图片描述

串口参数

在这里插入图片描述

串口时序

在这里插入图片描述

USART简介

在这里插入图片描述

USART框图

在这里插入图片描述

USRAT基本结构

在这里插入图片描述

数据帧

在这里插入图片描述
在这里插入图片描述

起始位检测

在受到噪声影响后,采用2:1策略,选择更多的作为所接收到的数据,并使噪声标志位NE置1

在这里插入图片描述
在这里插入图片描述

波特率发生器

在这里插入图片描述
在这里插入图片描述

CH340G

在这里插入图片描述

二、实例部分

使用USART1来作为例子,根据引脚定义,选择正确的接口
在这里插入图片描述

使用串口发送数据

接线图

在这里插入图片描述

代码实现

配置串口Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

void Serial_Init(void){
	// 开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	// 初始化引脚,发送数据引脚
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;		// 复用推挽输出
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;	// A9
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		// 50Hz翻转速度
	GPIO_Init(GPIOA, &GPIO_InitStructure);

	// 初始化串口配置
	USART_InitTypeDef USART_InitStructure;
	USART_InitStructure.USART_BaudRate = 9600; // 串口波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 不使用流控
	USART_InitStructure.USART_Mode = USART_Mode_Tx; // 串口模式,发送
	USART_InitStructure.USART_Parity = USART_Parity_No; // 无校验
	USART_InitStructure.USART_StopBits = USART_StopBits_1; // 选择一位停止位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 不需要校验位,八位字长
	USART_Init(USART1,&USART_InitStructure);
	
	// USART1使能
	USART_Cmd(USART1,ENABLE);
}

// 发送函数
void USART_SendByte(uint8_t Byte){
	USART_SendData(USART1,Byte);
	// 等待写入完成,写入完成之后会将标志位自动清0
	while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
}

// 发送数组函数
void USART_SendArray(uint8_t *Array,uint16_t Length){
	uint8_t i = 0;
	for(i=0;i<Length;i++){
		USART_SendData(USART1,Array[i]);
		// 等待写入完成,写入完成之后会将标志位自动清0
		while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
	}
}

// 发送字符串函数
void USART_SendString(uint8_t *String){
	uint8_t i = 0;
	for(i=0;String[i]!='\0';i++){
		USART_SendData(USART1,String[i]);
		// 等待写入完成,写入完成之后会将标志位自动清0
		while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
	}
}

// 返回X的Y次方
uint32_t Serial_Pow(uint32_t X,uint32_t Y){
	uint32_t Result = 1;
	while(Y--){
		Result *= X;
	}
	return Result;
}
// 发送数字函数
void USART_SendNum(uint32_t Num,uint16_t Length){
	uint8_t i = 0;
	for(i=0;i<Length;i++){
		USART_SendByte(Num / Serial_Pow(10,Length-i-1) % 10 + 0x30);
		// 等待写入完成,写入完成之后会将标志位自动清0
		while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
	}
}

//重定向fputc函数,fputc是printf函数的底层,printf通过不停的调用fputc来达到输出的效果
//重定向到串口
int fputc(int ch,FILE *f){
	USART_SendByte(ch);
	return ch;
}

// 封装使用sprintf输出到串口
void Serial_Printf(char *format, ...)
{
	char String[100];
	va_list arg;							// 可变参数列表
	va_start(arg, format);		// 从format开始接收可变参数
	vsprintf(String, format, arg);
	va_end(arg);
	USART_SendString((uint8_t*)String);
}


主函数main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"

int main(void)
{
	OLED_Init();
	Serial_Init();
	//USART_SendByte();
//	uint8_t Array[] = {0x41,0x42,0x43,0x44};
//	USART_SendArray(Array,4);
//	uint8_t String[] = {"hello world"};
//	USART_SendString(String);
//	USART_SendNum((uint32_t)12345,5);
//	printf("Num = %d\r\n",666);
//	char String[100];
//	sprintf(String,"Num = %d\r\n",666);
//	USART_SendString((uint8_t*)String);
	Serial_Printf("一程山水");
	while (1)
	{
		
	}
}

重定向printf需要勾上Use MicroLIB

在这里插入图片描述

中文不乱码方法

  1. 代码与串口都使用utf8格式,并在如下图位置加上–no-multibyte-chars
  2. 使用GB2312支持中文编码格式,串口使用GBK编码格式接收即可。

串口的发送与接收数据

线路连接与上面一致

代码实现

串口配置Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

uint8_t RxData;
uint8_t RxFlag;

void Serial_Init(void){
	// 开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	// 初始化引脚
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;		// 复用推挽输出
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;	// A9 发送数据
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		// 50Hz翻转速度
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;		// 上拉输出
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;	// A10 接收数据
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		// 50Hz翻转速度
	GPIO_Init(GPIOA, &GPIO_InitStructure);

	// 初始化串口配置
	USART_InitTypeDef USART_InitStructure;
	USART_InitStructure.USART_BaudRate = 9600; // 串口波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 不使用流控
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; // 串口模式,发送+接收
	USART_InitStructure.USART_Parity = USART_Parity_No; // 无校验
	USART_InitStructure.USART_StopBits = USART_StopBits_1; // 选择一位停止位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 不需要校验位,八位字长
	USART_Init(USART1,&USART_InitStructure);
	
	// 开启中断
	USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);
	
	//初始化NVIC
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);	// 分组
	NVIC_InitTypeDef NVIC_InitStructure;
	// 中断通道
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	// 中断通道使能
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	// 抢占优先级
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	// 响应优先级
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	NVIC_Init(&NVIC_InitStructure);

	
	// USART1使能
	USART_Cmd(USART1,ENABLE);
}

// 发送函数
void USART_SendByte(uint8_t Byte){
	USART_SendData(USART1,Byte);
	// 等待写入完成,写入完成之后会将标志位自动清0
	while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
}

// 发送数组函数
void USART_SendArray(uint8_t *Array,uint16_t Length){
	uint8_t i = 0;
	for(i=0;i<Length;i++){
		USART_SendData(USART1,Array[i]);
		// 等待写入完成,写入完成之后会将标志位自动清0
		while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
	}
}

// 发送字符串函数
void USART_SendString(uint8_t *String){
	uint8_t i = 0;
	for(i=0;String[i]!='\0';i++){
		USART_SendData(USART1,String[i]);
		// 等待写入完成,写入完成之后会将标志位自动清0
		while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
	}
}

// 返回X的Y次方
uint32_t Serial_Pow(uint32_t X,uint32_t Y){
	uint32_t Result = 1;
	while(Y--){
		Result *= X;
	}
	return Result;
}
// 发送数字函数
void USART_SendNum(uint32_t Num,uint16_t Length){
	uint8_t i = 0;
	for(i=0;i<Length;i++){
		USART_SendByte(Num / Serial_Pow(10,Length-i-1) % 10 + 0x30);
		// 等待写入完成,写入完成之后会将标志位自动清0
		while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET);
	}
}

//重定向fputc函数,fputc是printf函数的底层,printf通过不停的调用fputc来达到输出的效果
//重定向到串口
int fputc(int ch,FILE *f){
	USART_SendByte(ch);
	return ch;
}

// 封装使用sprintf输出到串口
void Serial_Printf(char *format, ...)
{
	char String[100];
	va_list arg;							// 可变参数列表
	va_start(arg, format);		// 从format开始接收可变参数
	vsprintf(String, format, arg);
	va_end(arg);
	USART_SendString((uint8_t*)String);
}

// 获取RxFlag
uint8_t USART_GetRxFlag(void){
	if(RxFlag == 1){
		RxFlag = 0;
		return 1;
	}
	return 0;
}

// 获取RxData
uint8_t USART_GetRxData(void){
	return RxData;
}

//中断函数
void USART1_IRQHandler(void){
	if(USART_GetITStatus(USART1,USART_IT_RXNE)==SET){
		RxData = USART_ReceiveData(USART1);
		RxFlag = 1;
		USART_ClearITPendingBit(USART1,USART_IT_RXNE);
	}
}


主函数main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"

uint8_t Serial_RxData;

int main(void)
{
	OLED_Init();
	OLED_ShowString(1, 1, "RxData:");
	
	Serial_Init();
	
	while (1)
	{
		if (USART_GetRxFlag() == 1)
		{
			Serial_RxData = USART_GetRxData();
			USART_SendByte(Serial_RxData);
			OLED_ShowHexNum(1, 8, Serial_RxData, 2);
		}
	}
}


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1478632.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OS三大内存分配策略

三种内存分配策略 1.firstfit bestfit worsefit firstfit firstfit : 按地址排序的空间列表 首先碰到第一个内存块&#xff0c;如果可用&#xff0c;那么直接占用 第一个内存块 bestfit bestfit :相对与首次&#xff0c;有特点&#xff0c;对于内存块的差值比较小&#xf…

【Linux】入门篇-Linux的历史及发展历程(linux小型化成为安卓竟然有一段那么有趣的历史!!!)

目录 1.硬件的发展&#xff1a;1946年2月14日&#xff0c;人类历史上第一个计算机---埃尼阿克&#xff1a;为战争而生 1.1计算机的诞生-----为了战争&#xff08;军工阶段&#xff09; 研发的原因 时间就是胜利 冯诺依曼 战争的作用 1.2 硅谷模式&#xff08;时代背景&a…

docker save 命令 docker load 命令 快速复制容器

docker save 命令 docker load 命令 1、docker save 命令2、docker load 命令 1、docker save 命令 docker save 命令用于在系统上把正在使用的某个容器镜像 导出成容器镜像文件保存下载&#xff0c;以便在其他系统上导入这个容器镜像文件 以便快速在其他服务器上启动相同的容…

数据结构------栈(Stack)和队列(Queue)

也是好久没写博客了&#xff0c;那今天就回归一下&#xff0c;写一篇数据结构的博客吧。今天要写的是栈和队列&#xff0c;也是数据结构中比较基础的知识。那么下面开始今天要写的博客了。 目录 栈&#xff08;Stack&#xff09; 队列&#xff08;Queue&#xff09; 喜欢就点…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Row容器组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Row容器组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Row组件 沿水平方向布局容器。 子组件 可以包含子组件。 接口 Row(value?…

腾讯云又双叕降价,云服务器配置优惠价格表2024新版报价

腾讯云服务器多少钱一年&#xff1f;62元一年起&#xff0c;2核2G3M配置&#xff0c;腾讯云2核4G5M轻量应用服务器218元一年、756元3年&#xff0c;4核16G12M服务器32元1个月、312元一年&#xff0c;8核32G22M服务器115元1个月、345元3个月&#xff0c;腾讯云服务器网txyfwq.co…

YAML管理接口框架配置的最佳实践

管理接口框架配置是构建强大的接口测试框架的关键一环。良好的配置管理可以提高测试效率、可维护性和可扩展性。在本文中&#xff0c;我们将重点介绍使用YAML&#xff08;YAML Ain’t Markup Language&#xff09;来管理接口框架配置的最佳实践&#xff0c;并通过实例演示其用法…

Linux使用C语言实现通过互斥锁限制对共享资源的访问

互斥锁限制共享资源的访问 主线程中有两个线程&#xff0c;分别输出信息。 #include <stdio.h> #include <pthread.h> #include <unistd.h>int g_data0;void* fun1(void *arg) {printf("t1&#xff1a;%ld thread is create\n", (unsigned long)…

类和对象(2)——距离C++又近了一步

目录 一、构造函数 1.1声明和定义构造函数 1.2成员名和参数名 1.3构造函数的使用 1.4初始化列表 二、析构函数 2.1析构函数的概念 2.2析构函数的性质 三、拷贝构造函数 四、赋值运算符重载 4.1运算符重载 4.2赋值运算符重载 一、构造函数 我们知道&#xff0c;C中…

利用R语言进行因子分析实战(数据+代码+可视化+详细分析)

&#x1f349;CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍: 研一&#xff5c;统计学&#xff5c;干货分享          擅长Python、Matlab、R等主流编程软件          累计十余项国家级比赛奖项&#xff0c;参与研究经费10w、40w级横向 文…

C++重新入门-string容器

目录 1.包含头文件 2.创建字符串 3.获取字符串长度 4.字符串拼接 5.字符串比较 相等性比较 大小比较 使用比较函数 6.访问字符串 7.查找子串 8.字符串修改 替换子串 插入字符或子串 删除字符或子串 9.提取子串 10.总结 当谈到C中的字符串时&#xff0c;std::str…

蓝桥杯刷题3

目录: 1. 天干地支 2. 明明的随机数 3. ISBN号码 4. 缩位求和 5. 幸运数字 6. 串的处理 7. 最长递增 8. 灌溉 9. 特殊日期 10. 最大距离 1. 天干地支 import java.util.*;public class Main {public static void main(String[] args) {Scanner scan new Scanner(Sys…

spring boot集成Elasticsearch 7.16.3

环境&#xff1a;Elasticsearch 版本 7.16.3 Elasticsearch for windows下载地址 windows 若依 spring boot版本 2.6.0 pom文件添加 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch<…

Automated Testing for LLMOps 01:使用CircleCI进行持续集成CI

Automated Testing for LLMOps 这是学习https://www.deeplearning.ai/short-courses/automated-testing-llmops/ 这门课的笔记 Learn how LLM-based testing differs from traditional software testing and implement rules-based testing to assess your LLM application. …

Java实战:构建高效预报名管理系统

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

基于transform的scale属性,动态缩放整个页面,实现数据可视化大屏自适应,保持比例不变形,满足不同分辨率的需求

文章目录 一、需求背景&#xff1a;二、需求分析&#xff1a;三、选择方案&#xff1a;四、实现代码&#xff1a;五、效果预览&#xff1a;六、封装组件&#xff1a; 一、需求背景&#xff1a; 数据可视化大屏是一种将数据、信息和可视化效果集中展示在一块或多块大屏幕上的技…

GL绘制自定义线条4_使用OpenGL ES实现钢笔效果

在以前的文章里http://t.csdnimg.cn/TgCtl&#xff0c;我简述了如何使用OpenGL ES实现光滑的粗线条的绘制效果&#xff0c;在闲暇时间我把它再进一步进化&#xff0c;实现了端点长度按照压感大小实现伸缩的逻辑&#xff0c;从而实现了如下的笔锋效果&#xff1a; 书写过程中的效…

MCBPS配置成SPI

MCBPS配置成SPI 典型的SPI接口 McBSP作为SPI主机 以McBSP为主的SPI接口如图所示。当McBSP被配置为主控器时,发送输出信号(DX)被用作SPI协议的SPISIMO信号,并且接收输入信号(DR)被用作SPISOMI信号。 表列出了将McBSP配置为主控器所需的寄存器位值。下表是有关配置要求…

动环监控是什么?为什么说它是3d可视化机房的眼睛?

在信息化时代的背景下&#xff0c;数据中心机房的重要性日益凸显&#xff0c;传统的人工管理模式显然已经无法应对持续增长的机房数量和规模、日益复杂的网络、频繁更新迭代的资产硬件......搭建3d可视化机房成为了许多企事业单位的共同选择。想要搭建3d可视化机房&#xff0c;…

iOS中卡顿产生的主要原因及优化思路

卡顿本质上是一个UI体验上的问题&#xff0c;而UI的渲染及显示&#xff0c;主要涉及CPU和GPU两个层面。若 CPUGPU渲染耗时超过16.7ms&#xff0c;就会在屏幕vsync信号到来时无法更新屏幕内容&#xff0c;进而导致卡顿。 iOS中UI渲染主要包含Layout->Draw->Prepare->Co…