【机器学习】特征选择之包裹式特征选择法

news2025/2/24 10:56:19

在这里插入图片描述

🎈个人主页:豌豆射手^
🎉欢迎 👍点赞✍评论⭐收藏
🤗收录专栏:机器学习
🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!

【机器学习】特征选择之包裹式特征选择法

  • 一 初步了解
    • 1.1 概念
    • 1.2 类比
  • 二 步骤
    • 2.1 选择评价器(评估模型):
    • 2.2 生成特征子集:
    • 2.3 训练模型:
    • 2.4 评估特征子集的性能:
    • 2.5 选择最佳特征子集:
    • 2.6 模型验证:
  • 三 优缺点
    • 3.1 优点:
    • 3.2 缺点:
  • 四 常用方法
    • 4.1 递归特征消除(Recursive Feature Elimination,RFE):
    • 4.2 递归特征添加(Sequential Feature Selector,SFS):
    • 4.3 基于遗传算法的特征选择:
    • 4.4 基于模型的特征选择:
    • 4.5 多种子集搜索算法:
  • 总结

引言:

在机器学习领域,特征选择是一个至关重要的步骤,它直接影响到模型的性能和泛化能力。

在众多特征选择方法中,包裹式特征选择法是一种常用且有效的方法之一。

本文将深入探讨包裹式特征选择法的原理、步骤、优缺点以及常用方法,帮助读者更好地理解和应用这一重要技术。

在这里插入图片描述

一 初步了解

1.1 概念

包裹式特征选择法是机器学习中一种常用的特征选择方法,其核心思想是将特征选择问题转化为一个优化问题,通过搜索特征子集的方式来选择最佳的特征组合,以提高模型性能。

与过滤式特征选择方法不同,包裹式特征选择法直接利用模型的性能来评估特征子集的好坏,因此更加贴近实际应用场景。

在包裹式特征选择法中,通常会先选定一个机器学习模型作为评价器,然后通过尝试不同的特征子集来训练模型,并使用交叉验证或留出法等技术来评估模型的性能。

根据评估指标的变化,可以选择最佳的特征子集作为最终的特征组合。

1.2 类比

想象你是一位厨师,正在准备一道美味的菜肴。

你有一系列食材(特征),但你知道并不是每种食材都对最终的菜肴有同样的贡献。

有些食材可能是关键的,而另一些可能只是起到点缀作用。

现在,你的目标是选择最佳的食材组合,以制作出口感最好的菜肴(模型性能最佳)。

这里,包裹式特征选择法就像是你在尝试不同的食材组合来制作菜肴一样。

你会尝试不同的组合,然后根据口味(模型性能)来评估每种组合的好坏。

你可能会制作几个小样本(交叉验证)或是留出一部分菜品来在最后评估(留出法),以确保你的评价是准确的。

最终,你会选择口味最佳的食材组合作为最终的菜肴配方(最佳的特征子集)。

这样,你就能够在尽量节省成本的情况下制作出最令人喜欢的菜肴。

二 步骤

包裹式特征选择法是直接利用模型的性能来评估特征子集的好坏,通常与交叉验证或留出法等技术结合使用。

下面是包裹式特征选择法的一般步骤:

2.1 选择评价器(评估模型):

首先,需要选择一个机器学习模型作为评价器,该模型可以是分类器、回归器或聚类器等。

评价器的选择通常取决于具体的问题和数据类型。

2.2 生成特征子集:

在包裹式特征选择中,会尝试生成不同的特征子集。

这可以通过以下几种方式之一来实现:

1 递归特征消除(Recursive Feature Elimination, RFE):

从原始特征集中递归地剔除最不重要的特征,直到达到所需的特征数量。

2 特征子集搜索算法:

例如,贪婪搜索算法或遗传算法等,用于搜索特定数量的特征子集。

3 随机生成特征子集:

通过随机选择特征的方式生成特征子集。

2.3 训练模型:

对于每个生成的特征子集,使用评价器对模型进行训练。

在训练过程中,使用交叉验证或留出法等技术来评估模型的性能。

这通常涉及将数据集分成训练集和验证集,然后在训练集上训练模型,在验证集上评估模型性能。

2.4 评估特征子集的性能:

使用选定的评价指标(例如准确率、精确率、召回率、F1-score等)来评估每个特征子集的性能。

这可以通过交叉验证或留出法等技术来实现。

2.5 选择最佳特征子集:

根据评估指标的变化,选择具有最佳性能的特征子集作为最终的特征组合。

通常选择性能最佳的特征子集作为最终的特征组合。

2.6 模型验证:

最后,使用选择的最佳特征子集对模型进行验证,以确保在真实数据上获得良好的性能。

这可以通过将测试集数据输入到模型中,并评估模型的性能来实现。

通过以上步骤,包裹式特征选择法能够在尽量减少特征数量的同时,确保模型的性能达到最优。然而,需要注意的是,由于其计算成本较高,通常只适用于特征数量较少的情况下

三 优缺点

3.1 优点:

1 更准确的性能评估:

包裹式特征选择直接使用模型的性能来评估特征子集,因此可以更准确地反映在实际任务中的性能。

2 适应性强:

由于直接使用模型进行评估,包裹式方法对于数据的分布和模型的复杂性更具适应性,可以更好地适应不同类型的问题。

3 考虑特征之间的关系:

由于在模型训练中考虑了特征之间的关系,包裹式方法能够捕捉到特征之间的相互影响,有助于选取更为相关的特征子集。

3.2 缺点:

1 计算成本高:

包裹式特征选择需要多次训练模型,每次都使用不同的特征子集,因此计算成本较高。这使得在大规模数据集上的应用受到限制。

2 过拟合风险:

由于直接使用模型性能来评估特征子集,存在过拟合的风险。在训练数据上表现良好的特征子集不一定在未知数据上表现优秀。

3 对模型选择敏感:

包裹式特征选择的效果受选定的模型影响较大。不同的模型可能导致选择不同的特征子集,这使得方法在模型选择上更为敏感。

4 特征间关系未被完全考虑:

尽管包裹式方法考虑了特征之间的关系,但在特征空间较大时,未必能够全面地探索到所有可能的特征组合。

总体而言,包裹式特征选择适用于特征较少且计算资源充足的情况。在实际应用中,需要权衡计算成本和性能提升,并考虑其他特征选择方法的优势和劣势。

四 常用方法

在机器学习中,包裹式特征选择方法通常基于以下思想:通过构建不同的特征子集,并利用特定的学习算法对每个子集进行评估,选择最佳的特征子集以提高模型性能。

下面是几种常见的包裹式特征选择方法:

4.1 递归特征消除(Recursive Feature Elimination,RFE):

RFE 是一种迭代的特征选择方法,它通过反复训练模型并删除权重较小的特征来逐步减少特征的数量。在每一轮迭代中,特征的重要性由模型的性能(如准确率、AUC 等)来衡量。

这个过程持续进行,直到达到所需的特征数量或达到最佳性能。

4.2 递归特征添加(Sequential Feature Selector,SFS):

与 RFE 类似,SFS 也是一种迭代的方法,但是它的策略是从一个空特征集开始,然后逐步地添加最有价值的特征,直到达到预定的特征数量或者达到最佳性能。

在每一轮迭代中,根据模型的性能来决定是否添加特征。

4.3 基于遗传算法的特征选择:

遗传算法是一种启发式优化算法,也可以用于特征选择。在这种方法中,特征子集被编码为染色体,并通过模拟生物进化的过程来优化特征子集。

通过交叉、变异等操作,不断地迭代生成新的特征子集,并利用模型性能来评估每个特征子集的适应度,直到达到停止条件。

4.4 基于模型的特征选择:

这种方法直接使用模型的预测能力来评估特征的重要性。

例如,使用决策树、支持向量机(SVM)、逻辑回归等模型,根据模型训练后得到的特征重要性或权重来进行特征选择。

4.5 多种子集搜索算法:

这类算法使用不同的搜索策略来探索特征子集的空间。例如,贪婪搜索、回溯搜索、随机搜索等方法,通过不同的方式生成特征子集并进行评估。
这些方法各自有其优缺点和适用场景,需要根据具体问题的特点和数据集的特征来选择合适的方法。

同时,还可以结合交叉验证等技术来评估特征选择的效果,以确保选择到的特征子集在未知数据上具有良好的泛化能力。

总结

包裹式特征选择法是一种重要的特征选择方法,通过构建不同的特征子集并利用模型的性能来选择最佳的特征子集,可以显著提高模型的性能和泛化能力。

然而,它也面临着计算成本高、过拟合等挑战,因此在应用时需要权衡利弊并选择合适的方法和策略。

通过本文的介绍,相信读者能够更好地理解和应用包裹式特征选择法,并在实际项目中取得更好的效果。

这篇文章到这里就结束了

谢谢大家的阅读!

如果觉得这篇博客对你有用的话,别忘记三连哦。

我是豌豆射手^,让我们我们下次再见

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1477925.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

matlab实现不同窗滤波器示例

1 汉明窗低通滤波器 : 在Matlab中使用汉明窗设计低通滤波器可以通过fir1函数实现。汉明窗通常用于设计滤波器,可以提供更突出的频率特性。 下面是一个示例代码,演示如何在Matlab中使用汉明窗设计低通滤波器: % 定义滤波器参数 fs …

数据结构——lesson4带头双向循环链表实现

前言✨✨ 💥个人主页:大耳朵土土垚-CSDN博客 💥 所属专栏:数据结构学习笔记​​​​​​ 💥双链表与单链表的区分:单链表介绍与实现 💥对于malloc函数有疑问的:动态内存函数介绍 感谢大家的观看…

J1—Vivado调试技巧VIO IP

1.简介 VIO(Virtual Input/Output)IP核是一种用于FPGA设计的IP核,它可以模拟输入/输出设备的功能,如键盘、鼠标、显示器等。VIO IP核可以在FPGA设计中用于调试和验证,帮助工程师快速定位问题并进行调试。如图所示&…

vue 解决:点击左侧相同菜单,右侧页面不重新加载的问题

1、问题描述: 其一、需求为: 无论是通过路由组件形成的平台管理系统,还是通过文件配置形成的平台管理系统,都存在通过切换左侧的导航栏而使右侧的页面切换的业务需求; 其二、问题描述为: A、步骤一&#…

全国产飞腾E2000Q +复旦微FPGA的轨道交通、电力解决方案

产品概述 ITX-XMF201是一款高性能边缘计算网关主板,采用飞腾E2000Q 4核处理器,国产化率达到95%国产化。 板载2电口,2路CAN,6路RS232接口,1路RS485接口,16路GPIO,可以满足银行、轨道交通、电力等…

springboot2入门到实战 - JWT

JWT是什么? JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely transmitting information between parties as a JSON object。 This information can be verified and trusted because it is digi…

便签软件哪个好用?好用便签怎么设置提醒?

在当今信息爆炸的时代,便签软件成为了人们生活中不可或缺的工具之一。那么,便签软件哪个好用呢?下面为您推荐几款备受好评的便签软件。首先是知名度极高的好用便签,它拥有强大的笔记功能、提醒功能和多端同步,让您随时…

COMPOSER安装使用WIN下升级PHP-V

想用TP6使用phpspreadsheet但是说我PHP版本低,原来是PHP7.0 composer要求至少7.4 直接修改环境变量,把PHP目录切换到7.4 composer升级比较简单,在PHP目录下CMD然后官网的命令执行下即可 下面就可以在TP根目录下执行命令安装PHPSPREADSHEET…

Java进阶-集合(3)与泛型

这次介绍集合中的Iterator迭代器,以及泛型。简单来说,泛型对集合的元素类型进行了限制,使用泛型可以在编译时检查类型安全,提高代码的重用率。内容如下 一、Iterator迭代器 1、概念 Iterator迭代器是一个接口,作用…

MATLAB环境下脑电信号EEG的谱分析

脑电信号一直伴随着人类的生命,脑电波是脑神经细胞发生新陈代谢、离子交换时细胞群兴奋突触电位总和,脑电信号的节律性则和丘脑相关,含有丰富的大脑活动信息。通常我们所接触的脑电图都是头皮脑电图,在有些特殊场合还需要皮下部位…

TikTok网络相关问题详解来了,附原生住宅代理IP供应商推荐,

想要迈过TikTok新手门槛,首先必须要学习的就是网络问题。很多人开始做TikTok账号或者TikTok小店时,都会遇到一些先前没有遇到的词汇和概念,比如原生IP,独享IP,甚至专线,那么一个IP可以做几个账号呢&#xf…

0粉低成本带货!职人号矩阵正成为商家的香饽饽

近年来,中国消费市场变化不断,线上消费持续上涨,线上线下一体化成为零售行业的发展新趋势。 加上抖音等平台都在大力发展本地生活,众多连锁商家、本地商家、百货商场纷纷加快数字化转型步伐,掘金线上海量流量&#xff…

机器学习:原理、应用与未来展望

第一章 是什么 机器学习(Machine Learning)是一门跨学科的学科,它使用计算机模拟或实现人类学习行为,通过不断地获取新的知识和技能,重新组织已有的知识结构,从而提高自身的性能。机器学习涉及多个学科&am…

HGAME 2024 WEEK4 WP

文章目录 IOTez7621 MISCezKeyboardMaybezip**Mondrians 🔑 REchange webReverse and Escalation. 想念21和22年的平台和week4的 6557225了 IOT ez7621 拿到固件直接binwalk解,之后grep出hgame 在usr/lib/opkg/info/kmod-flag.control找到这个&#x…

Quartz 任务调度框架源码阅读解析

概念: quartz 是一个基于JAVA的定时任务调度框架 案例: <dependency><groupId>org.quartz-scheduler</groupId><artifactId>quartz</artifactId><version>2.3.0</version></dependency>JobDetail job JobBuilder.newJob(Sc…

TP6上传图片到OSS(记录贴)

1&#xff0c;先安装&#xff0c;我使用composer安装 在项目的根目录运行composer require aliyuncs/oss-sdk-php 2,安装成功以后vendor目录下可以看到如图&#xff1a; 3&#xff0c;上传图片代码如下&#xff1a; <?php namespace app\controller;use app\BaseControll…

宝塔FTP服务设置并结合cpolar内网穿透实现远程传输文件

文章目录 1. Linux安装Cpolar2. 创建FTP公网地址3. 宝塔FTP服务设置4. FTP服务远程连接小结 5. 固定FTP公网地址6. 固定FTP地址连接 宝塔FTP是宝塔面板中的一项功能&#xff0c;用于设置和管理FTP服务。通过宝塔FTP&#xff0c;用户可以创建FTP账号&#xff0c;配置FTP用户权限…

D*算法超详解 (D星算法 / Dynamic A*算法/ Dstar算法)(死循环解决--跟其他资料不一样奥)

所需先验知识&#xff08;没有先验知识可能会有大碍&#xff0c;了解的话会对D*的理解有帮助&#xff09;&#xff1a;A*算法/ Dijkstra算法 何为D*算法 Dijkstra算法是无启发的寻找图中两节点的最短连接路径的算法&#xff0c;A*算法则是在Dijkstra算法的基础上加入了启发函数…

数据抽取平台pydatax介绍--实现和项目使用

数据抽取平台pydatax实现过程中&#xff0c;有2个关键点&#xff1a; 1、是否能在python3中调用执行datax任务&#xff0c;自己测试了一下可以&#xff0c;代码如下&#xff1a; 这个str1就是配置的shell文件 try:result os.popen(str1).read() except Exception as …

吴恩达机器学习全课程笔记第四篇

目录 前言 P61-P68 激活函数 Softmax算法 P69-P73 Adam算法 更多类型的层 模型评估 P74-P79 偏差和方差 建立表现基准 学习曲线 偏差和方差与神经网络 前言 这是吴恩达机器学习笔记的第四篇&#xff0c;第三篇笔记请见&#xff1a; 吴恩达机器学习全课程笔记第…