基于InternLM和LangChain搭建自己的知识库

news2024/11/16 19:33:57

背景

LLM存在一定的局限性,如:

  • 知识时效性受限:如何让LLM能够获取最新的知识
  • 专业能力有限:如何打造垂直领域的大模型
  • 定制化成本高:如何打造个人专属的LLM应用

正文

为了突破LLM的局限性,目前有两种范式可行:RAG(检索增强生成)和Finetune(模型微调)。

这两种方式的优缺点如下:
RAG: 低成本、可实时更新、受基座模型影响大、单次回答知识有限
Finetune: 可个性化微调、知识覆盖面广、成本高昂、无法实时更新

常见的RAG模式:

在这里插入图片描述

高级的RAG模式:
在这里插入图片描述

什么是LangChain

为了开发RAG应用,我们使用LangChain。LangChain是一个开源工具框架,通过为各种LLM提供通用接口来简化应用程序的开发流程,帮助开发者自由构建LLM应用。

LangChain的核心组成模块:

  • 链(Chains):将组件组合实现端到端应用,通过一个对象封装实现一系列LLM操作
  • Eg:检索问答链,覆盖实现RAG的全部流程

下图是基于LangChain搭建RAG应用的流程图:
在这里插入图片描述
后面我们将根据该流程来搭建自己的RAG应用。

环境配置

InternLM 模型部署

在 InternStudio 平台中选择 A100(1/4) 的配置,如下图所示镜像选择 Cuda11.7-conda,如下图所示:

在这里插入图片描述

接下来打开刚刚租用服务器的 进入开发机,并且打开其中的终端开始环境配置、模型下载和运行 demo

在这里插入图片描述

进入开发机后,在页面的左上角可以切换 JupyterLab终端VScode,并在终端输入 bash 命令,进入 conda 环境。如下图所示:

在这里插入图片描述

进入 conda 环境之后,使用以下命令从本地一个已有的 pytorch 2.0.1 的环境

bash
/root/share/install_conda_env_internlm_base.sh InternLM

然后使用以下命令激活环境

conda activate InternLM

并在环境中安装运行 demo 所需要的依赖。

# 升级pip
python -m pip install --upgrade pip

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

模型下载

在本地的 /root/share/temp/model_repos/internlm-chat-7b 目录下已存储有所需的模型文件参数,可以直接拷贝到个人目录的模型保存地址:

mkdir -p /root/data/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b

如果本地拷贝模型参数出现问题,我们也可以使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

/root 路径下新建目录 data,在目录下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/data/download.py 执行下载,模型大小为 14 GB,下载模型大概需要 10~20 分钟

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/root/data/model', revision='v1.0.3')

注意:使用 pwd 命令可以查看当前的路径,JupyterLab 左侧目录栏显示为 /root/ 下的路径。

在这里插入图片描述

LangChain 相关环境配置

在已完成 InternLM 的部署基础上,还需要安装以下依赖包:

pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7

同时,我们需要使用到开源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型)

首先需要使用 huggingface 官方提供的 huggingface-cli 命令行工具。安装依赖:

pip install -U huggingface_hub

然后在和 /root/data 目录下新建python文件 download_hf.py,填入以下代码:

  • resume-download:断点续下
  • local-dir:本地存储路径。(linux环境下需要填写绝对路径)
import os

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

但是,使用 huggingface 下载可能速度较慢,我们可以使用 huggingface 镜像下载。与使用hugginge face下载相同,只需要填入镜像地址即可。

download_hf.py 中的代码修改为以下代码:

import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

然后,在 /root/data 目录下执行该脚本即可自动开始下载:

python download_hf.py

更多关于镜像使用可以移步至 HF Mirror 查看。

下载 NLTK 相关资源

我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。

我们用以下命令下载 nltk 资源并解压到服务器上:

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

之后使用时服务器即会自动使用已有资源,无需再次下载。

下载本项目代码

我们在仓库中同步提供了所有脚本,可以查看该教程文件的同级目录的 demo 文件夹。

建议通过以下目录将仓库 clone 到本地,可以直接在本地运行相关代码:

cd /root/data
git clone https://github.com/InternLM/tutorial

通过上述命令,可以将本仓库 clone 到本地 root/data/tutorial 目录下,在之后的过程中可以对照仓库中的脚本来完成自己的代码,也可以直接使用仓库中的脚本。

知识库搭建

数据收集

我们选择由上海人工智能实验室开源的一系列大模型工具开源仓库作为语料库来源,包括:

  • OpenCompass:面向大模型评测的一站式平台
  • IMDeploy:涵盖了 LLM 任务的全套轻量化、部署和服务解决方案的高效推理工具箱
  • XTuner:轻量级微调大语言模型的工具库
  • InternLM-XComposer:浦语·灵笔,基于书生·浦语大语言模型研发的视觉-语言大模型
  • Lagent:一个轻量级、开源的基于大语言模型的智能体(agent)框架
  • InternLM:一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖

首先我们需要将上述远程开源仓库 Clone 到本地,可以使用以下命令:

# 进入到数据库盘
cd /root/data
# clone 上述开源仓库
git clone https://gitee.com/open-compass/opencompass.git
git clone https://gitee.com/InternLM/lmdeploy.git
git clone https://gitee.com/InternLM/xtuner.git
git clone https://gitee.com/InternLM/InternLM-XComposer.git
git clone https://gitee.com/InternLM/lagent.git
git clone https://gitee.com/InternLM/InternLM.git

接着,为语料处理方便,我们将选用上述仓库中所有的 markdown、txt 文件作为示例语料库。注意,也可以选用其中的代码文件加入到知识库中,但需要针对代码文件格式进行额外处理(因为代码文件对逻辑联系要求较高,且规范性较强,在分割时最好基于代码模块进行分割再加入向量数据库)。

我们首先将上述仓库中所有满足条件的文件路径找出来,我们定义一个函数,该函数将递归指定文件夹路径,返回其中所有满足条件(即后缀名为 .md 或者 .txt 的文件)的文件路径:

import os 
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

加载数据

得到所有目标文件路径之后,我们可以使用 LangChain 提供的 FileLoader 对象来加载目标文件,得到由目标文件解析出的纯文本内容。由于不同类型的文件需要对应不同的 FileLoader,我们判断目标文件类型,并针对性调用对应类型的 FileLoader,同时,调用 FileLoader 对象的 load 方法来得到加载之后的纯文本对象:

from tqdm import tqdm
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader

def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

使用上文函数,我们得到的 docs 为一个纯文本对象对应的列表。

构建向量数据库

得到该列表之后,我们就可以将它引入到 LangChain 框架中构建向量数据库。由纯文本对象构建向量数据库,我们需要先对文本进行分块,接着对文本块进行向量化。

LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150(由于篇幅限制,此处没有展示切割效果,学习者可以自行尝试一下,想要深入学习 LangChain 文本分块可以参考教程 《LangChain - Chat With Your Data》:

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

接着我们选用开源词向量模型 Sentence Transformer 来进行文本向量化。LangChain 提供了直接引入 HuggingFace 开源社区中的模型进行向量化的接口:

from langchain.embeddings.huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

同时,考虑到 Chroma 是目前最常用的入门数据库,我们选择 Chroma 作为向量数据库,基于上文分块后的文档以及加载的开源向量化模型,将语料加载到指定路径下的向量数据库:

from langchain.vectorstores import Chroma

# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

整体脚本

将上述代码整合在一起为知识库搭建的脚本:

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os

# 获取文件路径函数
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

# 加载文件函数
def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

# 目标文件夹
tar_dir = [
    "/root/data/InternLM",
    "/root/data/InternLM-XComposer",
    "/root/data/lagent",
    "/root/data/lmdeploy",
    "/root/data/opencompass",
    "/root/data/xtuner"
]

# 加载目标文件
docs = []
for dir_path in tar_dir:
    docs.extend(get_text(dir_path))

# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

可以在 /root/data 下新建一个 demo目录,将该脚本和后续脚本均放在该目录下运行。运行上述脚本,即可在本地构建已持久化的向量数据库,后续直接导入该数据库即可,无需重复构建。

InternLM 接入 LangChain

为便捷构建 LLM 应用,我们需要基于本地部署的 InternLM,继承 LangChain 的 LLM 类自定义一个 InternLM LLM 子类,从而实现将 InternLM 接入到 LangChain 框架中。完成 LangChain 的自定义 LLM 子类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 InternLM 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

class InternLM_LLM(LLM):
    # 基于本地 InternLM 自定义 LLM 类
    tokenizer : AutoTokenizer = None
    model: AutoModelForCausalLM = None

    def __init__(self, model_path :str):
        # model_path: InternLM 模型路径
        # 从本地初始化模型
        super().__init__()
        print("正在从本地加载模型...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()
        self.model = self.model.eval()
        print("完成本地模型的加载")

    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        # 重写调用函数
        system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
        - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
        - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
        """
        
        messages = [(system_prompt, '')]
        response, history = self.model.chat(self.tokenizer, prompt , history=messages)
        return response
        
    @property
    def _llm_type(self) -> str:
        return "InternLM"

在上述类定义中,我们分别重写了构造函数和 _call 函数:对于构造函数,我们在对象实例化的一开始加载本地部署的 InternLM 模型,从而避免每一次调用都需要重新加载模型带来的时间过长;_call 函数是 LLM 类的核心函数,LangChain 会调用该函数来调用 LLM,在该函数中,我们调用已实例化模型的 chat 方法,从而实现对模型的调用并返回调用结果。

在整体项目中,我们将上述代码封装为 LLM.py,后续将直接从该文件中引入自定义的 LLM 类。

构建检索问答链

LangChain 通过提供检索问答链对象来实现对于 RAG 全流程的封装。所谓检索问答链,即通过一个对象完成检索增强问答(即RAG)的全流程,针对 RAG 的更多概念,我们会在视频内容中讲解,也欢迎读者查阅该教程来进一步了解:《LLM Universe》。我们可以调用一个 LangChain 提供的 RetrievalQA 对象,通过初始化时填入已构建的数据库和自定义 LLM 作为参数,来简便地完成检索增强问答的全流程,LangChain 会自动完成基于用户提问进行检索、获取相关文档、拼接为合适的 Prompt 并交给 LLM 问答的全部流程。

加载向量数据库

首先我们需要将上文构建的向量数据库导入进来,我们可以直接通过 Chroma 以及上文定义的词向量模型来加载已构建的数据库:

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)

上述代码得到的 vectordb 对象即为我们已构建的向量数据库对象,该对象可以针对用户的 query 进行语义向量检索,得到与用户提问相关的知识片段。

实例化自定义 LLM 与 Prompt Template

接着,我们实例化一个基于 InternLM 自定义的 LLM 对象:

from LLM import InternLM_LLM
llm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")
llm.predict("你是谁")

构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。我们可以基于 LangChain 的 Template 基类来实例化这样一个 Template 对象:

from langchain.prompts import PromptTemplate

# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答用户的问题。如果你不知道答案,就说你不知道。总是使用中文回答。
问题: {question}
可参考的上下文:
···
{context}
···
如果给定的上下文无法让你做出回答,请回答你不知道。
有用的回答:"""

# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

构建检索问答链

最后,可以调用 LangChain 提供的检索问答链构造函数,基于我们的自定义 LLM、Prompt Template 和向量知识库来构建一个基于 InternLM 的检索问答链:

from langchain.chains import RetrievalQA

qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

得到的 qa_chain 对象即可以实现我们的核心功能,即基于 InternLM 模型的专业知识库助手。我们可以对比该检索问答链和纯 LLM 的问答效果:

# 检索问答链回答效果
question = "什么是InternLM"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])

# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

部署 Web Demo

在完成上述核心功能后,我们可以基于 Gradio 框架将其部署到 Web 网页,从而搭建一个小型 Demo,便于测试与使用。

我们首先将上文的代码内容封装为一个返回构建的检索问答链对象的函数,并在启动 Gradio 的第一时间调用该函数得到检索问答链对象,后续直接使用该对象进行问答对话,从而避免重复加载模型:


from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import InternLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA

def load_chain():
    # 加载问答链
    # 定义 Embeddings
    embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

    # 向量数据库持久化路径
    persist_directory = 'data_base/vector_db/chroma'

    # 加载数据库
    vectordb = Chroma(
        persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上
        embedding_function=embeddings
    )

    # 加载自定义 LLM
    llm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")

    # 定义一个 Prompt Template
    template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答
    案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
    {context}
    问题: {question}
    有用的回答:"""

    QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

    # 运行 chain
    qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})
    
    return qa_chain

接着我们定义一个类,该类负责加载并存储检索问答链,并响应 Web 界面里调用检索问答链进行回答的动作:

class Model_center():
    """
    存储检索问答链的对象 
    """
    def __init__(self):
        # 构造函数,加载检索问答链
        self.chain = load_chain()

    def qa_chain_self_answer(self, question: str, chat_history: list = []):
        """
        调用问答链进行回答
        """
        if question == None or len(question) < 1:
            return "", chat_history
        try:
            chat_history.append(
                (question, self.chain({"query": question})["result"]))
            # 将问答结果直接附加到问答历史中,Gradio 会将其展示出来
            return "", chat_history
        except Exception as e:
            return e, chat_history

然后我们只需按照 Gradio 的框架使用方法,实例化一个 Web 界面并将点击动作绑定到上述类的回答方法即可:

import gradio as gr

# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:
    with gr.Row(equal_height=True):   
        with gr.Column(scale=15):
            # 展示的页面标题
            gr.Markdown("""<h1><center>InternLM</center></h1>
                <center>书生浦语</center>
                """)

    with gr.Row():
        with gr.Column(scale=4):
            # 创建一个聊天机器人对象
            chatbot = gr.Chatbot(height=450, show_copy_button=True)
            # 创建一个文本框组件,用于输入 prompt。
            msg = gr.Textbox(label="Prompt/问题")

            with gr.Row():
                # 创建提交按钮。
                db_wo_his_btn = gr.Button("Chat")
            with gr.Row():
                # 创建一个清除按钮,用于清除聊天机器人组件的内容。
                clear = gr.ClearButton(
                    components=[chatbot], value="Clear console")
                
        # 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。
        db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[
                            msg, chatbot], outputs=[msg, chatbot])

    gr.Markdown("""提醒:<br>
    1. 初始化数据库时间可能较长,请耐心等待。
    2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>
    """)
gr.close_all()
# 直接启动
demo.launch()

通过将上述代码封装为 run_gradio.py 脚本,直接通过 python 命令运行,即可在本地启动知识库助手的 Web Demo,默认会在 7860 端口运行,接下来将服务器端口映射到本地端口即可访问:

在这里插入图片描述

此处我们简要介绍如何将服务器端口映射到本地端口:

首先我们需要配置一下本地的 SSH Key ,我们这里以Windows为例。

  1. 在本地机器上打开Power Shell终端。在终端中,运行以下命令来生成SSH密钥对:(如下图所示)
ssh-keygen -t rsa

在这里插入图片描述

  1. 您将被提示选择密钥文件的保存位置,默认情况下是在 ~/.ssh/ 目录中。按Enter键接受默认值或输入自定义路径。

  2. 公钥默认存储在 ~/.ssh/id_rsa.pub,可以通过系统自带的 cat 工具查看文件内容:(如下图所示)

~ 是用户主目录的简写,.ssh 是SSH配置文件的默认存储目录,id_rsa.pub 是SSH公钥文件的默认名称。所以,cat ~\.ssh\id_rsa.pub 的意思是查看用户主目录下的 .ssh 目录中的 id_rsa.pub 文件的内容。

cat ~\.ssh\id_rsa.pub

在这里插入图片描述

  1. 将公钥复制到剪贴板中,然后回到 InternStudio 控制台,点击配置SSH Key。如下图所示:

在这里插入图片描述

  1. 将刚刚复制的公钥添加进入即可。

在这里插入图片描述

  1. 在本地终端输入以下指令.7860是在服务器中打开的端口,而33090是根据开发机的端口进行更改。如下图所示:
ssh -CNg -L 7860:127.0.0.1:7860 root@ssh.intern-ai.org.cn -p 33090

在这里插入图片描述

我们在仓库中也同步提供了上述所有脚本,可以查看该教程文件的同级目录的 demo 文件夹。


作者其他不相干的专栏,也来看看:

  • Prometheus+Grafana 实践派

Prometheus来自CNCF的产品,云原生时代监控产品; Grafana是一款开源的指标可视化工具,拥有大量的插件和图表工具来查询,展示您的指标,本专栏从基础知识开始学习,逐渐进阶,最终实现企业级统一监控目标

  • Loki + Tempo

一步步学习Grafana家族的轻量型聚合日志框架-Loki,链路追踪框架-Tempo

  • Spring Boot 3.x

Spring Boot 具有 Spring 一切优秀特性,Spring 能做的事,Spring Boot 都可以做,本专栏将全面介绍Spring Boot特性,继而对其进行全面的源码分析,不再犀牛望月,Spring Boot 版本:3.x

  • Spring Security

使用Spring Security版本5.7.2

  • Spring Boot Admin2

SBA2 源码解析

  • 阿提小作

作者平时心血来潮开发的小系统,都在运行玩了一段时间后停了

等等,还有其他很多

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1476708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

flask知识--01

flask介绍 # python 界的web框架&#xff1a; Django&#xff1a;大而全&#xff0c;使用率较高 &#xff1a;https://github.com/django/django -FastAPI&#xff1a;新项目选择使用它&#xff1a;https://github.com/tiangolo/fastapi -flask&#xff1a;公司一些…

数据结构试题练习

(1). 假如队列未满&#xff0c;现有变量data需要入队,请写出表达式; if( (tail1)%SEQLEN ! head ) {seqn[tail] data;tail (tail1)%SEQLEN; } (2). 假如队列未空&#xff0c;现在需要从队列取一个元素并赋值给变量data&#xff0c;请写出表达式; if( head ! tail ) {data se…

蓝桥杯题练习:平地起高楼

题目要求 function convertToTree(regions, rootId "0") {// TODO: 在这里写入具体的实现逻辑// 将平铺的结构转化为树状结构&#xff0c;并将 rootId 下的所有子节点数组返回// 如果不存在 rootId 下的子节点&#xff0c;则返回一个空数组}module.exports convert…

【Python笔记-设计模式】备忘录模式

一、说明 备忘录模式是一种行为设计模式&#xff0c;允许在不暴露对象实现细节的情况下保存和恢复对象之前的状态。 (一) 解决问题 主要解决在不破坏封装性的前提下&#xff0c;捕获一个对象的内部状态&#xff0c;并在对象之外保存这个状态&#xff0c;以便在需要时恢复对象…

基于vue-office实现docx、xlsx、pdf文件的在线预览

概述 在做项目的时候会遇到docx、xlsx、pdf等文件的在线预览需求&#xff0c;实现此需求可以有多种解决方式&#xff0c;本文基于vue-office实现纯前端的文件预览。 效果 如下图&#xff0c;分别为docx、xlsx、pdf三种类型的文件在线加载后的效果。你也可以访问官方预览网址…

Android进阶之路 - RecyclerView停止滑动后Item自动居中(SnapHelper辅助类)

之前一直没注意 SnapHelper 辅助类的功能&#xff0c;去年的时候看到项目中仅通过俩行代码设置 RecyclerView 后就提升了用户体验&#xff0c;觉得还是很有必要了解一下&#xff0c;尝试过后才发现其 PagerSnapHelper、LinearSnapHelper 子类可以作用于不同场景&#xff0c;且听…

Python matplotlib

目录 1、安装 matplotlib 2、绘制折线图 修改标签文字和线条粗细 校正图形 3、绘制散点图 绘制单点 绘制一系列点 自动计算数据 删除数据点的轮廓 自定义颜色 使用颜色映射 自动保存图表 4、随机漫步 创建 RandomWalk() 类 选择方向 绘制随机漫步图 给点着色 …

EMR StarRocks实战——猿辅导的OLAP演进之路

目录 一、数据需求产生 二、OLAP选型 2.1 需求 2.2 调研 2.3 对比 三、StarRocks的优势 四、业务场景和技术方案 4.1 整体的数据架构 4.2 BI自助/报表/多维分析 4.3 实时事件分析 4.5 直播教室引擎性能监控 4.4 B端业务后台—斑马 4.5 学校端数据产品—飞象星球 4…

【多模态LLM】(task1)Sora相关技术路径(更新中)

note sora虽然未开源&#xff0c;但这个系列是学习常见text-to-video模型背后的原理 文章目录 note一、Sora是什么?二、stable diffusion模型1. 模型架构2. Unet模型 三、视频生成技术四、Sora相关技术和video caption1. Vit模型2. Reference 一、Sora是什么? Sora是text-t…

Freesia项目介绍

项目介绍 这是一个Spring Boot Vue的前后端分离项目&#xff0c;实现的是一个通用的后台管理系统。 框架使用 前端使用了layui-vue和layui-vue-admin&#xff0c;分别提供了组件和前端整体架构的支持。 后端使用Spring Boot框架管理 项目技术使用 前端 Layui-vue、Layui…

淘宝商品数据爬取商品信息采集数据分析API接口详细步骤展示(含测试链接)

01 数据采集 数据采集是数据可视化分析的第一步&#xff0c;也是最基础的一步&#xff0c;数据采集的数量和质量越高&#xff0c;后面分析的准确的也就越高&#xff0c;我们来看一下淘宝网的数据该如何爬取。点此获取淘宝API测试key&密钥 淘宝网站是一个动态加载的网站&a…

飞天使-学以致用-devops知识点3-安装jenkins

文章目录 构建带maven环境的jenkins 镜像安装jenkinsjenkins yaml 文件安装插件jenkins 配置k8s创建用户凭证 构建带maven环境的jenkins 镜像 # 构建带 maven 环境的 jenkins 镜像 docker build -t 192.168.113.122:8858/library/jenkins-maven:jdk-11 .# 登录 harbor docker …

【嵌入式——QT】日期与定时器

日期 QTime&#xff1a;时间数据类型&#xff0c;仅表示时间&#xff0c;如 16:16:16&#xff1b;QDate&#xff1a;日期数据类型&#xff0c;仅表示日期&#xff0c;如2024-1-22&#xff1b;QDateTime&#xff1a;日期时间数据类型&#xff0c;表示日期和时间&#xff0c;如2…

Unity | 动态读取C#程序集实现热更新

目录 一、动态语言 二、创建C#dll 1.VS中创建一个C#语言的库工程 2.添加UnityEngine.dll的依赖 3.编写代码&#xff0c;生成dll 三、Unity使用dll 一、动态语言 计算机编程语言可以根据它们如何将源代码转换为可以执行的代码来分类为静态语言和动态语言。 静态语言&…

Centos7:自动化配置vim | suoders信任列表添加普通用户

Centos7&#xff1a;自动化配置vim | suoders信任列表添加普通用户 vim 配置原理sudoers系统可信任列表中添加普通用户自动化配置vim vim 配置原理 在目录/etc下有一个vimrc文件&#xff0c;该文件是系统中公共的vim配置文件&#xff0c;对所有用户都成立。  而在每个普通用户…

ABAP-CPI: Get CPI Monitoring Log (通过postman去获取CPI监控中心的日志)

参照文档: SAP Business Accelerator Hub Using Message Monitoring and Logging (sap.com) 进入到你的CPI监控中心: 获取到上面的 https://..hana.ondemand.com的地址,在它后面加上/api/v1 即https://....hana.ondemand.com/api/v1 然后就可以开始postman调用了,文章…

[设计模式Java实现附plantuml源码~行为型] 对象状态及其转换——状态模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…

vue2 + axios + mock.js封装过程,包含mock.js获取数据时报404状态的解决记录,带图文,超详细!!!

vue axios mock.js 以下是封装的过程&#xff0c;记录一下 1、首先先了解什么是mock.js的用途及特点 官网地址&#xff1a;Mock.js (mockjs.com) 作用&#xff1a;生成随机数据&#xff0c;拦截 Ajax 请求 优势&#xff1a; 2、了解axios的原理及使用 官网地址&#xff1a…

Python把excel内容保存为图片(非统计图而是纯原表格数据)

一、引入 excel2img 库&#xff0c;没有的话使用 pip install excel2img进行安装 二、采用如下方法进行图片生成 excel文件名为&#xff1a;111.xlsx excel表格里面的sheet名称列表为 [Sheet1, Sheet2] 最终保存为以sheet名称.png的图片 支持跨表格合并项 import excel2i…

【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN

Flink SQL 语法篇&#xff08;八&#xff09;&#xff1a;集合、Order By、Limit、TopN 1.集合操作2.Order By、Limit 子句2.1 Order By 子句2.2 Limit 子句 3.TopN 子句 1.集合操作 集合操作支持 Batch / Streaming 任务。 UNION&#xff1a;将集合合并并且去重。UNION ALL&a…