机器遗忘同等重要,AI如何忘记不良数据,保护用户隐私?

news2024/11/18 19:26:43

引言:大语言模型中的机器遗忘问题

在人工智能领域,大语言模型(LLMs)因其在文本生成、摘要、问答等任务中展现出的卓越能力而备受关注。然而,这些模型在训练过程中可能会记住大量数据,包括敏感或不当的信息,从而引发伦理和安全问题。为了解决这些问题,机器遗忘(Machine Unlearning,MU)技术应运而生,旨在从预训练模型中移除不良数据的影响及其相关模型能力,同时保持对其他信息的完整知识生成,而不影响因果无关的信息。机器遗忘在大语言模型的生命周期管理中扮演着关键角色,它不仅有助于构建安全、可信赖的生成型AI,还能在不需要完全重新训练的情况下提高资源效率。

论文标题:RETHINKING MACHINE UNLEARNING FOR LARGE LANGUAGE MODELS

公众号「夕小瑶科技说」后台回复“机器遗忘”获取论文pdf。

机器遗忘(MU)的定义与重要性

1. MU在大语言模型(LLM)中的应用

机器遗忘(Machine Unlearning, MU)是一种新兴的技术,旨在从预训练的大语言模型(LLM)中消除不良数据的影响,例如敏感或非法信息,同时保持对基础知识生成的完整性,并且不影响与之无关的信息。在大语言模型中,MU的应用包括但不限于文本生成、摘要、句子完成、改写和问答等生成性任务。例如,Eldan & Russinovich (2023) 使用MU策略来防止生成《哈利·波特》系列的版权材料。

2. 遗忘不良数据影响的必要性

大语言模型因其能够记忆大量文本而备受关注,但这也可能导致包括社会偏见、记忆个人和机密信息等道德和安全问题。因此,精确地遗忘这些不良数据对于确保LLM的安全性、可靠性和信任度至关重要。此外,考虑到LLM的训练成本高昂且耗时,重新训练以消除不良数据的影响通常是不切实际的,这使得MU成为一种可行的替代方案。

LLM遗忘的挑战与现状

1. 遗忘目标的界定问题

在LLM中精确定义和定位“遗忘目标”是一项挑战,因为这些目标可能是训练集的子集或需要被移除的知识概念。当前的研究通常是上下文和任务依赖的,缺乏标准化的语料库来进行LLM遗忘。

2. 数据与模型交互的复杂性

随着LLM的规模增长,开发可扩展和适应性强的MU技术变得更加复杂。这不仅影响性能评估,而且由于缺乏重新训练作为基准,评估的准确性也受到影响。例如,研究提出了上下文遗忘和虚构遗忘的方法,前者允许在黑盒模型上进行遗忘,后者提供了重新训练的替代方案。

3. 遗忘效果的多面性评估

遗忘的范围往往没有明确规定,这与模型编辑中面临的挑战相似。有效的遗忘应确保LLM删除目标数据的知识,同时保持对该范围之外数据的效用。此外,尽管LLM遗忘在多种应用中具有潜力,但目前缺乏全面和可靠的评估。

  • 例如,最近的研究表明,即使在编辑模型以删除敏感信息的努力之后,这些信息仍可能从编辑后的模型中被逆向工程出来,这突显了进行彻底和对抗性评估的必要性,以及设计更多机械性方法以保证遗忘的真实性。

遗忘方法的探索与评估

1. 模型基方法与输入基方法

在探索大语言模型(LLMs)的遗忘方法时,研究者们主要集中在模型基方法和输入基方法两大类。

  • 模型基方法涉及修改LLMs的权重或架构组件以实现遗忘目标,例如通过梯度上升或其变体来更新模型参数,使得模型对于遗忘集(Df)中的样本产生误预测的可能性最大化。

    (图为基于模型的图像编码基本原理框架图)

  • 输入基方法则设计输入指令,如上下文示例或提示,来引导原始LLM(无需参数更新)达到遗忘目标。

2. 影响函数与梯度上升变体

影响函数是评估数据移除对模型性能影响的标准方法,但在LLM遗忘的背景下并不常用,主要是因为涉及到求逆Hessian矩阵的计算复杂性,以及使用近似法导出影响函数时的准确性降低。

梯度上升(Gradient Ascent,GA)是一种直接的遗忘方法,通过最大化遗忘集Df中样本的误预测可能性来更新模型参数。GA的变体包括将其转换为梯度下降方法,目的是最小化重新标记遗忘数据上的预测可能性。

3. 本地化知识遗忘

本地化知识遗忘的目标是识别和定位对遗忘任务至关重要的模型单元(例如层、权重或神经元)。

  • 例如,通过表示去噪或因果追踪来完成模型层的本地化,或者使用基于梯度的显著性来识别需要微调以实现遗忘目标的关键权重。

这种方法的目的是在保护模型对非遗忘目标数据的效用的同时,确保LLMs删除目标数据的知识。

遗忘效果的评估框架

1. 与重训练的比较

在传统的遗忘范式中,从头开始重训练模型并从原始训练集中移除被遗忘的数据被视为精确遗忘。然而,由于重训练LLMs的可扩展性挑战,很难建立评估LLM遗忘性能的上限。最近的解决方案是引入虚构数据(合成作者档案)到模型训练范式中,模拟在新引入的集合上的重训练过程。

2. 鲁棒性评估与“硬”范围内的例子

遗忘的有效性指标之一是确保对于遗忘范围内的例子,即使是那些与遗忘目标直接相关的“硬”例子,也能实现遗忘。评估“硬”范围内的例子可以通过技术如改写LLMs打算遗忘的内容或创建多跳问题来实现。

3. 训练数据检测与隐私保护

成员推断攻击(Membership Inference Attack,MIA)旨在检测数据点是否是受害模型训练集的一部分,这是评估机器遗忘方法的一个关键隐私揭示指标。在LLM遗忘的背景下,特别是当重训练不是一个选项时,这一概念变得更加重要。

LLM遗忘的应用领域

1. 版权与隐私保护

在LLM遗忘的应用中,版权与隐私保护占据了重要的位置。

  • 例如,机器遗忘(MU)被用于防止生成哈利波特系列的版权材料(Eldan & Russinovich, 2023)。

这一应用不仅涉及法律和伦理考量,还涉及到数据的合法使用。在美国,联邦贸易委员会(FTC)要求一家公司彻底销毁因未经合法同意而训练的模型,这一做法被称为算法性吐露(algorithmic disgorgement)。LLM遗忘提供了一种可行的替代方法,可以通过移除非法数据的影响来避免完全销毁模型。

版权保护内容的删除与确定训练数据的确切来源需要删除的问题相关,这引发了数据归属问题

  • 例如,与哈利波特系列相关的泄露可能有多种原因,例如书籍被用于LLM的训练数据,或者训练数据包含与系列相关的在线讨论,或者LLM使用检索增强生成(retrieval-augmented generation),可能导致从搜索结果中泄露信息。

除了从训练数据中删除版权信息外,还有防止LLM泄露用户隐私的场景,特别是个人识别信息(PII)。这一关切与LLM记忆和训练数据提取密切相关。

2. 社会技术伤害减少

LLM遗忘的另一个应用是对齐(alignment),旨在使LLM与人类指令对齐,并确保生成的文本符合人类价值观。遗忘可以用来忘记有害行为,如产生有毒、歧视性、非法或道德上不可取的输出。遗忘作为安全对齐工具,可以在LLM开发的不同阶段进行。目前的研究主要集中在“预对齐”阶段(Yao et al., 2023),但在其他阶段可能存在未开发的机会。例如在对齐之前、期间或之后。

幻觉是LLM面临的一个重大挑战,它涉及生成虚假或不准确的内容,这些内容可能看起来是合理的。先前的研究表明,遗忘可以通过针对特定问题并遗忘事实上不正确的回应来减少LLM的幻觉(Yao et al., 2023)。由于幻觉可能由多个来源引起,可能的用途是遗忘作为常见幻觉或误解来源的事实上不正确的数据。

LLM也被认为会产生偏见的决策和输出

  • 视觉领域,遗忘已被证明是减少歧视以实现公平决策的有效工具。

  • 语言领域,遗忘已被应用于减轻性别-职业偏见(Yu et al., 2023)和许多其他公平问题。

  • 然而,更多的机会存在,例如遗忘训练数据中的刻板印象。

LLM也被认为容易受到越狱攻击(jailbreaking attacks),即,故意设计的提示导致LLM生成不希望的输出)以及投毒/后门攻击。鉴于遗忘在其他领域作为对抗攻击防御的成功,遗忘可以成为这两种类型攻击的自然解决方案

总结与未来展望

1. LLM遗忘的挑战与机遇

LLM遗忘面临的挑战包括确保遗忘目标的普遍性、适应各种模型设置(包括白盒和黑盒场景)以及考虑遗忘方法的具体性。LLM遗忘应该专注于有效地移除数据影响和特定模型能力,以便在各种评估方法中,特别是在对抗性环境中验证遗忘的真实性。LLM遗忘还应该精确地定义遗忘范围,同时确保在这个遗忘范围之外保持一般语言建模性能。

通过审视当前的技术水平,我们获得了LLM遗忘未来发展的洞见。例如,基于定位的遗忘显示出效率和效果的双重优势。有效的遗忘需要仔细考虑数据-模型影响和对手。尽管LLM遗忘和模型编辑在其制定和方法设计上存在相似之处,但它们在目标和方法上有所不同。此外,从LLM遗忘的研究中获得的洞见可能会催生其他类型的基础模型(例如,大型视觉-语言模型)的技术进步。

2. 从遗忘到编辑:LLM的新方向

LLM遗忘与模型编辑紧密相关,模型编辑关注的是局部改变预训练模型的行为,以引入新知识或纠正不希望的行为。遗忘的目标有时与编辑的目标一致,尤其是当编辑被引入以擦除信息时。像遗忘范围一样,编辑范围也是确保在定义范围之外不影响模型生成能力的关键。遗忘和模型编辑都可以使用“先定位,然后编辑/遗忘”的原则来处理。

尽管存在上述联系,LLM遗忘和编辑之间有明显的区别

  • 首先,与编辑响应相比,遗忘响应有时是未知的。不正确或不当的遗忘响应的特定性可能被视为遗忘后的LLM幻觉。

  • 其次,尽管遗忘和模型编辑可能共享一些共同的算法基础,但前者不创建新的答案映射。相反,其核心目标是全面消除归因于特定知识或概念的影响。

  • 第三,我们可以从“工作记忆”的角度区分模型编辑和遗忘。已知在LLM中,工作记忆是通过神经元激活而不是基于权重的长期记忆来维持的。

因此,现有的基于记忆的模型编辑技术专注于更新短期工作记忆,而不是改变模型权重中封装的长期记忆。然而,研究者们认为遗忘需要更机械化的方法来促进对预训练LLM的“深层”修改。

论文的更广泛影响

1. 伦理与社会影响的讨论

在探讨大语言模型(LLMs)的机器遗忘(MU)时,我们不得不面对一系列伦理和社会问题。这些模型因其能够生成与人类创作内容极为相似的文本而备受关注,但它们对大量语料的记忆能力也可能导致伦理和安全问题。

例如,社会偏见、刻板印象、敏感或非法内容的生成、以及可能被用于发展网络攻击或生物武器的风险。这些问题强调了根据不同安全背景,灵活且高效地调整预训练LLMs的必要性,以满足用户和行业的特定需求。

机器遗忘作为一种替代方案,旨在从预训练模型中移除不良数据的影响及相关模型能力。例如,为了防止生成《哈利·波特》系列的版权材料,研究人员使用了机器遗忘策略。这些讨论不仅关系到技术的发展,也触及到如何在不损害模型整体知识生成能力的同时,确保数据隐私和版权的保护。

2. 机器遗忘在实际场景中的应用必要性

机器遗忘在实际应用中的必要性体现在多个方面。

  • 首先,它有助于避免敏感或非法信息的传播,并且在不影响与遗忘目标无关信息的前提下,维护模型的完整性。

  • 其次,考虑到LLMs的昂贵和漫长的训练周期,重新训练模型以消除不良数据效应通常是不切实际的。

因此,机器遗忘成为了一个可行的选择。

在实际应用中,机器遗忘可以用于版权和隐私保护,例如避免生成版权受保护的内容,或防止泄露用户的个人识别信息。此外,机器遗忘还可以用于社会技术性危害的减少,比如通过遗忘有害行为来使LLMs与人类指令和价值观保持一致,或者减少由于错误信息源导致的幻觉现象。

公众号「夕小瑶科技说」后台回复“机器遗忘”获取论文pdf。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1475962.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MySQL】学习和总结标量子查询

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-kLo6jykc7AcEVEQk {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

消息中间件之RocketMQ源码分析(二十二)

Broker主从同步流程 配置数据同步流程 配置数据包含4种类型:Topic配置、消费者位点、延迟位点、订阅关系配置。每种配置数据由一个继承自ConfigManager的类来管理,继承关系如图。Slave如何从Master同步这些配置呢?我们先来看一下初始化服务的步骤 第一步:Maste…

【JavaEE进阶】图书管理系统开发日记——捌

文章目录 🍃前言🎍统一数据返回格式🚩快速入门🚩存在问题🎈问题原因🎈代码修改 🚩统一格式返回的优点 🍀统一异常处理🌲前端代码的修改🚩登录页面&#x1f6a…

openai.CLIP多模态模型简介

介绍 OpenAI CLIP(Contrastive Language–Image Pretraining)是一种由OpenAI开发的多模态学习模型。它能够同时理解图像和文本,并在两者之间建立联系,实现了图像和文本之间的跨模态理解。 如何工作 CLIP模型的工作原理是将来自…

三、软考-系统架构设计师笔记-计算机系统基础知识

计算机系统概述 计算机系统是指用于数据管理的计算机硬件、软件及网络组成的系统。 它是按人的要求接收和存储信息,自动进行数据处理和计算,并输出结果信息的机器系统。 冯诺依曼体系计算机结构: 1、计算机硬件组成 冯诺依曼计算机结构将…

C#理论 —— WPF 应用程序Console 控制台应用

文章目录 1. WPF 应用程序1.1 工程创建1.2 控件1.2.1 控件的公共属性1.2.1 TextBox 文本框1.2.1 Button 按钮 *. Console 控制台应用1.1 工程创建 1. WPF 应用程序 1.1 工程创建 Visual Studio 中新建项目 - 选择WPF 应用程序; 1.2 控件 1.2.1 控件的公共属性 …

2024常用的 Python 自动化测试框架有哪些?

Unittest是Python中最常用的测试框架之一,它提供了丰富和强大的测试工具和方法,可以帮助开发者更好地保证代码质量和稳定性,本文就来介绍下Unittest单元测试框架。 1. 介绍 unittest是Python的单元测试框架,它提供了一套丰富的测…

【MySQL】基本查询(表的增删改查)-- 详解

CRUD:Create(创建),Retrieve(读取),Update(更新),Delete(删除)。 一、Create insert [into] table_name [(column [, column] ...)] v…

硬件工程师入门基础知识(三)钽电容应用(二)

钽电容应用(二) 1.钽电容使用容量选择2.非固体电解质钽电容器使用时应注意的问题2.1 容量和损耗2.2 直流漏电流2.3 使用电压2.4 反向电压2.5 纹波电流2.6 失效率的影响因素2.7 补充说明: 1.钽电容使用容量选择 许多情况下,高能混…

自定义Chrome的浏览器开发者工具DevTools界面的字体和样式

Chrome浏览器开发者工具默认的字体太小,想要修改但没有相关设置。 外观——字体可以自定义字体,但大小不可以调整。 github上有人给出了方法 整理为中文教程: 1.打开浏览器开发者工具,点开设置——实验,勾上红框设…

实现unity场景切换

本文实现两个按键实现场景1和场景2之间的切换 ①首先在unity 3D中创建两个场景,分别为Scene1和Scene2 ②在Scene1中创建一个Button,修改txt内容为“To Scene2”,并在Buttons下创建一个空物体,用于挂载脚本。 脚本Trans Scene.…

自然语言:信息抽取技术在CRM系统中的应用与成效

一、引言 在当今快速变化的商业环境中,客户关系管理(CRM)已成为企业成功的关键因素。CRM系统的核心在于有效地管理客户信息,跟踪与客户的每一次互动,以及深入分析这些数据以提升客户满意度和忠诚度。在我最近参与的一个…

综合实战(volume and Compose)

"让我,重获新生~" MySQL 灾难恢复 熟练掌握挂载卷的使用,将Mysql的业务数据存储在 外部。 实战思想: 使用 MySQL 5.7 的镜像创建容器并创建一个普通数据卷 "mysql-data"用来保存容器中产生的数据。我们需要容器连接到Mysql服务&a…

智慧公厕:打造智慧城市环境卫生新标杆

随着科技的不断发展和城市化进程的加速推进,智慧城市建设已经成为各地政府和企业关注的焦点。而作为智慧城市环境卫生管理的基础设施,智慧公厕的建设和发展也备受重视,被誉为智慧城市的新标杆。本文以智慧公厕源头厂家广州中期科技有限公司&a…

OpenAI要为GPT-4解决数学问题了:奖励模型指错,解题水平达到新高度

原文:OpenAI要为GPT-4解决数学问题了:奖励模型指错,解题水平达到新高度 - 知乎 对于具有挑战性的 step-by-step 数学推理问题,是在每一步给予奖励还是在最后给予单个奖励更有效呢?OpenAI 的最新研究给出了他们的答案。…

LASSO算法

LASSO (Least Absolute Shrinkage and Selection Operator) 是一种回归分析的方法,它能够同时进行变量选择和正则化,以增强预测准确性和模型的解释性。LASSO通过在损失函数中加入一个L1惩罚项来实现这一点。该惩罚项对系数的绝对值进行约束。 基本概念 …

前后端延迟怎么解决

当今互联网应用的发展越来越迅猛,用户对于网站或应用的性能要求也越来越高。其中一个重要方面就是前后端延迟的解决,也就是减少前端与后端之间的通信时间延迟,提高用户体验。本文将详细介绍如何解决前后端延迟的问题。 网络延迟 数据在网络…

springboot项目中使用mybatis作为数据查询框架,如何实现查询sql的日志打印输出?

在Spring Boot项目中使用MyBatis作为数据查询框架时,可以通过配置日志记录器来实现SQL查询的日志打印输出。MyBatis支持多种日志框架,如SLF4J、Log4j2等。这里介绍几种常见的配置方法: 1. 使用application.properties或application.yml配置 …

如何开通微信小程序商城

微信小程序店铺是一种新型的线上商城,可以帮助商家快速搭建自己的线上销售平台,吸引更多的用户进行购买。作为小程序服务商,我们可以帮助商家开通微信小程序店铺,提升他们的线上销售业绩。 1. 进入采云小程序。进入采云小程序首页…

skiplist(高阶数据结构)

目录 一、概念 二、实现 三、对比 一、概念 skiplist是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: A Probabilistic Alternative to Balanced Trees》 skiplist本质上是一种查找结构,用于解决算法中的查找问题,…