python|闲谈2048小游戏和数组的旋转及翻转和转置

news2024/11/19 11:24:36

目录

2048

生成数组

n阶方阵

方阵旋转

顺时针旋转

逆时针旋转

mxn矩阵

矩阵旋转

测试代码

测试结果

翻转和转置


2048

《2048》是一款比较流行​的数字游戏​,最早于2014年3月20日发行。原版2048由Gabriele Cirulli首先在GitHub上发布,后被移植到各个平台,并且衍生出不计其数的版本。但在网上看到,居说它也不算是原创,是基于《1024》和《小3传奇》的玩法开发而成的;还有一说,它来源于另一款游戏《Threes!》,由Asher Vollmer和Greg Wohlwend合作开发,于2014年2月6日在App Store上架。

2048游戏规则很简单,游戏开始时在4x4的方格中随机出现数字2,每次可以选择上下左右其中一个方向去滑动,每滑动一次,所有的数字方块都会往滑动的方向靠拢外,相邻的相同数字在靠拢时会相加,系统也会在空白的格子里随机增加一个数字2或4。玩家要想办法在这16格范围中,不断上下左右滑动相加数字,从而凑出“2048”这个数字方块。

实际上,这个游戏就是在操作一个4x4的二维数组,数组的元素只要1-11就行了,因为2的11次方就是2048。同样,相邻相同数字的累加就变成了相邻相同指数的递增1。

在编写这个2048游戏前,先来谈谈4x4数组的操作,对python来说虽然也有数组,但通常会用列表来操作。以下就在IDLE shell上流水账操作:

生成数组

16个数字的列表推导式:

>>> [i for i in range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

用*解包更pythonic:

>>> [*range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

分割成4x4二维列表:

>>> [[*range(16)][i*4:i*4+4] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

只是数列如此写法可能更好:

>>> [[*range(i*4,i*4+4)] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

全0列表:

>>> [[0]*4 for _ in range(4)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

n阶方阵

从4阶方阵扩展到n阶:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> matrix(4)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> matrix(5)
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]
>>> matrix(6)
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35]]

随机生成数字1或2,比例为3:1:

>>> from random import sample as rnd
>>> rnd([1,1,1,2],1)
[1]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)

随机产生1或者2个“1”,比例为2:1:

>>> from random import sample as rnd
>>> x = 4
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
x = 5
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

方阵旋转

numpy有现成的函数rot90(),表示顺时针旋转数组90度。

>>> import numpy as np
>>> np.array(range(16))
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
>>> np.array([[*range(i*4,i*4+4)] for i in range(4)])
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> array = np.array([[*range(i*4,i*4+4)] for i in range(4)])

逆时针旋转,参数k为正数:

>>> np.rot90(array)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])
>>> np.rot90(array, k=2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=3)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])

顺时针旋转,参数k为负数:

>>> np.rot90(array, k=-1)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])
>>> np.rot90(array, k=-2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=-3)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])

不使用numpy,只用列表推导式也能实现旋转:

顺时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> mat4 = matrix(4)
>>> mat4
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> [[mat[len(mat[0])-j-1][i] for j in range(len(mat[0]))] for i in range(len(mat))]
[[12, 8, 4, 0], [13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3]]

写一个模拟np.array的__repr__方法来检测旋转效果:

class List():# 仅支持二维数组的展示
    def __init__(self, lst):
        self.x = lst
    def __repr__(self):
        n = len(str(max(sum(self.x,[]))))
        res = []
        for mat in self.x:
            res.append(', '.join(f'{x:>{n}}' for x in mat))
        return '],\n\t['.join(res).join(['Array([ [','] ])'])

检测结果如下:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> mat4 =matrix(4)
>>> List(mat4)
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(mat4))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate(rotate(mat4)))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(mat4))))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate(rotate(rotate(rotate(mat4)))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])

结果符合预期,旋转4次恢复原样;同样更高阶方阵也符合:

>>> List(matrix(5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])
>>> List(rotate(matrix(5)))
Array([ [20, 15, 10,  5,  0],
    [21, 16, 11,  6,  1],
    [22, 17, 12,  7,  2],
    [23, 18, 13,  8,  3],
    [24, 19, 14,  9,  4] ])

逆时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(rotate2(matrix(4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate2(rotate2(matrix(4))))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(rotate2(matrix(4)))))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(rotate2(matrix(4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate2(matrix(5)))
Array([ [ 4,  9, 14, 19, 24],
    [ 3,  8, 13, 18, 23],
    [ 2,  7, 12, 17, 22],
    [ 1,  6, 11, 16, 21],
    [ 0,  5, 10, 15, 20] ])
>>> List(rotate2(rotate2(matrix(5))))
Array([ [24, 23, 22, 21, 20],
    [19, 18, 17, 16, 15],
    [14, 13, 12, 11, 10],
    [ 9,  8,  7,  6,  5],
    [ 4,  3,  2,  1,  0] ])

mxn矩阵

把方阵拓展到矩阵:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(matrix(5,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15],
    [16, 17, 18, 19] ])
>>> List(matrix(5,5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])

矩阵旋转

rotate顺时针旋转,rotate2逆时针旋转

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(rotate(matrix(3,4)))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(matrix(3,4)))))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate(rotate(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(matrix(3,4)))))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate2(matrix(3,4)))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate(rotate(rotate(rotate(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
List(rotate2(rotate2(rotate2(rotate2(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])

旋转函数还能写成如下形式,只是坐标与range参数的互调形式:

>>> rotate = lambda m: [[m[j][i] for j in range(len(m)-1,-1,-1)] for i in range(len(m[0]))]
>>> rotate2 = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0])-1,-1,-1)]

lambda匿名函数虽然很简洁,但没有普通函数易懂,我们把lambda函数改成模拟np.rot90()的普通函数rotate(matrix, k=1),其中参数k为90度的倍数,正数顺时针旋转,负数则逆时针旋转:

def rotate(matrix, k=1):
    rows = len(matrix)
    cols = len(matrix[0])
    res = [[0]*rows for _ in range(cols)]
    k %= 4
    if k==1:
        for i in range(rows):
            for j in range(cols):
                res[j][rows-i-1] = matrix[i][j]
    elif k==2:
        res = [[0]*cols for _ in range(rows)]
        for i in range(rows):
            for j in range(cols):
                res[rows-i-1][cols-j-1] = matrix[i][j]
    elif k==3:
        for i in range(rows):
            for j in range(cols):
                res[cols-j-1][i] = matrix[i][j]
    else:
        return matrix
    return res

测试代码

def rotate(matrix, k=1):
    rows = len(matrix)
    cols = len(matrix[0])
    res = [[0]*rows for _ in range(cols)]
    k %= 4
    if k==1:
        for i in range(rows):
            for j in range(cols):
                res[j][rows-i-1] = matrix[i][j]
    elif k==2:
        res = [[0]*cols for _ in range(rows)]
        for i in range(rows):
            for j in range(cols):
                res[rows-i-1][cols-j-1] = matrix[i][j]
    elif k==3:
        for i in range(rows):
            for j in range(cols):
                res[cols-j-1][i] = matrix[i][j]
    else:
        return matrix
    return res


def show(matrix):
    n = len(str(max(sum(matrix,[]))))
    res = []
    for mat in matrix:
        res.append(', '.join(f'{x:>{n}}' for x in mat))
    print('],\n\t['.join(res).join(['Array([ [','] ])']))


matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]

for i in range(-4,5):
    show(rotate(matrix(4,4), i))

for i in range(-4,5):
    show(rotate(matrix(5,3), i))

测试结果

Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])

翻转和转置

翻转可以是水平方向和重置方向的:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> flipH = lambda m: [[m[i][len(m[0])-j-1] for j in range(len(m[0]))] for i in range(len(m))]
>>> flipV = lambda m: [[m[len(m)-j-1][i] for i in range(len(m[0]))] for j in range(len(m))]
>>> List(flipH(matrix(4,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12] ])
>>> List(flipV(matrix(4,4)))
Array([ [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])
>>> List(flipH(matrix(3,5)))
Array([ [ 4,  3,  2,  1,  0],
    [ 9,  8,  7,  6,  5],
    [14, 13, 12, 11, 10] ])
>>> List(flipV(matrix(3,5)))
Array([ [10, 11, 12, 13, 14],
    [ 5,  6,  7,  8,  9],
    [ 0,  1,  2,  3,  4] ])
>>> List(flipH(matrix(5,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12],
    [19, 18, 17, 16] ])
>>> List(flipV(matrix(5,4)))
Array([ [16, 17, 18, 19],
    [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])

转置可以看作是翻转和旋转的组合,对方阵来说就是以对角线为轴的翻转:

>>> transpose = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(transpose(matrix(4,4)))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(transpose(transpose(matrix(4,4))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(matrix(4,4)))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(flipH(rotate(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(rotate2(matrix(4,4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(flipV(rotate2(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])

在numpy中,转置由.T属性完成

>>> import numpy as np
>>> arr = np.array(matrix(3,4))
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> arr.T
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])
>>> arr = np.array(matrix(4,4))
>>> arr.T
array([[ 0,  4,  8, 12],
       [ 1,  5,  9, 13],
       [ 2,  6, 10, 14],
       [ 3,  7, 11, 15]])
>>> arr.T.T
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> arr = np.array(matrix(5,4))
>>> arr.T
array([[ 0,  4,  8, 12, 16],
       [ 1,  5,  9, 13, 17],
       [ 2,  6, 10, 14, 18],
       [ 3,  7, 11, 15, 19]])


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1475735.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode142. 环形链表 II刷题详解

今天力扣刷到了一个特别有意思的题目,于是就写了下面的题解来加深以下理解。 142. 环形链表 II - 力扣(LeetCode) 这个可以分为两大步去写,首先要判断链表是否有环,然后如果有环就去找到环的入口,没有环返…

11 PLL IP核

PLL IP 核简介 锁相环(PLL)作为一种反馈控制电路,其特点是利用外部输入的参考信号来控制环路内部震荡信号的频率和相位。因为锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作…

一文读懂压敏电阻原理,参数,选型

大家好,我是砖一。 压敏电阻并不是一般的电阻,而是一种具有瞬态电压抑制功能的元件,效果同TVS。 这篇文章介绍压敏电阻的一些基本知识,包括参数、选型、应用等。 一,基础知识 压敏电阻用MY表示,MY后…

东方博宜 1078. 求恰好使s=1+1/2+1/3+…+1/n的值大于X时n的值

东方博宜 1078. 求恰好使s11/21/3…1/n的值大于X时n的值 #include<iostream> using namespace std; int main() {int x ;cin >> x ;double s 0 ;int i 1 ;bool m true ;while(m){s 1.0/i ;if(s>x)break;i ;}cout << i ;return 0 ; }

【C++那些事儿】深入理解C++类与对象:从概念到实践(上)| 揭开this指针的神秘面纱

&#x1f4f7; 江池俊&#xff1a; 个人主页 &#x1f525;个人专栏&#xff1a; ✅数据结构冒险记 ✅C那些事儿 &#x1f305; 有航道的人&#xff0c;再渺小也不会迷途。 文章目录 1. 面向过程和面向对象初步认识2.类的引入3.类的定义4.类的访问限定符及封装4.1 访问限定符…

SpringBoot案例(黑马学习笔记)

这个案例呢&#xff0c;就是Tlias智能学习辅助系统。 参考接口文档完成后端功能的开 发&#xff0c;然后结合前端工程进行联调测试即可。 完成后的成品效果展示&#xff1a; 准备工作 需求&环境搭建 需求说明 部门管理 部门管理功能开发包括&#xff1a; ● 查询部门列…

C++ 高频考点

1. C/C内存有哪几种类型&#xff1f; C中&#xff0c;内存分为5个区&#xff1a;堆(malloc)、栈(如局部变量、函数参数)、程序代码区&#xff08;存放二进制代码&#xff09;、全局/静态存储区&#xff08;全局变量、static变量&#xff09;和常量存储区&#xff08;常量&…

Linux如何磁盘分区2

gdisk GPT 128个分区 注意&#xff1a;转换格式时保证此分区没有被系统占用 parted -s /dev/sdc mklabel gpt #将/dev/sdc(MBR格式)转换成(GPT格式) parted -s /dev/sdc mklabel msdos #将/dev/sda(GPT格式)转换成(MBR格式) 1.创建分区 yum -y install gdisk #安装分…

Postman越来越难用了

今天看到有个哥们吐槽postman的新版界面&#xff0c;这位是Spotify的资深工程师&#xff0c;所以他的槽点还是有些代表性&#xff0c;他是这么说的 Uhhhh what happened to Postman? I just want to send, and inspect http requests? What is all this shit? Adam Rackis S…

【黑马程序员】3、TypeScript常用类型_黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程

课程地址&#xff1a;【黑马程序员前端TypeScript教程&#xff0c;TypeScript零基础入门到实战全套教程】 https://www.bilibili.com/video/BV14Z4y1u7pi/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 目录 3、TypeScript常用类型 3.1 类型注解 …

SD-WAN技术:优化国内外服务器访问的关键

在全球化的商业环境中&#xff0c;企业经常需要在国内访问国外的服务器。然而&#xff0c;由于地理位置和网络架构的限制&#xff0c;这种跨国访问往往会遇到速度慢、延迟高等问题。SD-WAN&#xff08;软件定义广域网&#xff09;技术的兴起&#xff0c;为企业提供了一种新的解…

kotlin与java的相互转换

Kotlin转java 将kotlin代码反编译成java Tools -> Kotlin -> Show Kotlin Bytecode 然后点击 【Decompile】 生成java代码 java转kotlin Code -> Convert Java File To Kotlin File

代码随想录算法训练营第二十七天| 39. 组合总和、40.组合总和II、131.分割回文串

文章目录 1.组合总和2.组合总和II3.分割回文串 1.组合总和 参数和返回值&#xff1a; vector<vector<int>> result; vector<int> path; int sum; void backtracking(vector<int>& candidates, int target, int index)终止条件&#xff1a;大于等于…

小白水平理解面试经典题目leetcode. 606 Construct String from Binary Tree【递归算法】

Leetcode 606. 从二叉树构造字符串 题目描述 例子 小白做题 坐在自习室正在准备刷题的小白看到这道题&#xff0c;想想自己那可是没少和白月光做题呢&#xff0c;也不知道小美刷题刷到哪里了&#xff0c;这题怎么还没来问我&#xff0c;难道是王谦谦去做题了&#xff1f; 这…

MES系统实施的几大关键步骤

在制造业中&#xff0c;MES管理系统成为了提升生产效率、优化资源配置和确保产品质量的关键工具。然而&#xff0c;由于MES管理系统的复杂性&#xff0c;成功实施并发挥其最大效益需要一系列精心策划的步骤。本文将详细介绍MES管理系统成功实施的几大关键步骤&#xff0c;以帮助…

腾讯云服务器4核8G性能,和阿里云比怎么样?

腾讯云4核8G服务器支持多少人在线访问&#xff1f;支持25人同时访问。实际上程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&#xff0c;假设公网带宽太小&#xff0c;流量直接卡在入口&#xff0c;4核8G配置的CPU内存也会造成计算…

【王道操作系统】ch1计算机系统概述-02操作系统的发展历程

文章目录 【王道操作系统】ch1计算机系统概述-02操作系统的发展历程01 手工操作阶段02 批处理阶段&#xff08;1&#xff09;单道批处理系统&#xff08;2&#xff09;多道批处理系统 03 分时操作系统04 实时操作系统&#xff08;1&#xff09;硬实时系统&#xff08;2&#xf…

2024年2月19日-2月25日周报

文章目录 1. 本周计划2. 完成情况2.1 DCGANS网络架构2.2 SRGAN网络架构 3. 总结及收获4.下周计划 1. 本周计划 学习网络架构DCGANS和SRGAN 2. 完成情况 2.1 DCGANS网络架构 模型的核心&#xff1a;&#xff08;论文链接&#xff09; 取消池化层&#xff0c;使用带步长(str…

docker安装flink

docker安装flink 5.1、拉取flink镜像&#xff0c;创建网络 docker pull flink docker network create flink-network5.2、创建 jobmanager # 创建 JobManager docker run \-itd \--namejobmanager \--publish 8081:8081 \--network flink-network \--env FLINK_PROPERTIES&…

多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型

目录 往期精彩内容&#xff1a; 前言 1 多特征变量数据集制作与预处理 1.1 导入数据 1.2 CEEMDAN分解 1.3 数据集制作与预处理 2 麻雀优化算法 2.1 麻雀优化算法介绍 2.2 基于Python的麻雀优化算法实现 2.3 麻雀优化算法-超参数寻优过程 3 基于Pytorch的CEEMDAN SSA…