SCI一区 | Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的多特征分类预测

news2025/1/16 2:36:06

SCI一区 | Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的故障多特征分类预测

目录

    • SCI一区 | Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的故障多特征分类预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.【SCI一区级】Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络(CNN)融合多头自注意力机制的故障多特征分类预测。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图。
3.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
4.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

ST-CNN-MATT是一种故障多特征分类预测方法,它结合了S变换时频图、卷积神经网络(CNN)和多头自注意力机制(MATT)。

故障多特征分类预测是指通过对故障信号进行特征提取和分类,来预测故障的类型或状态。ST-CNN-MATT方法通过以下步骤实现:

S变换时频图:首先,将故障信号进行S变换,将其转换为时频图。S变换是一种将信号从时域转换到时频域的方法,它能够反映信号在时间和频率上的变化。广义S变换时频图是一种数学模型,用于表示随机变量之间的依赖关系。揭示时间序列的混沌性、平稳性和固有的相似性,挖掘故障波形的隐含特征,实现故障特征的增强。

特征提取:使用CNN对S变换时频图进行特征提取。CNN是一种深度学习模型,通过卷积和池化操作可以有效地提取图像或时频图的特征。CNN可以学习到不同频率和时间尺度上的特征。

多头自注意力机制:为了捕捉时频图中不同位置之间的依赖关系,ST-CNN-MSA引入了多头自注意力机制。自注意力机制是一种能够学习序列或图像中不同位置之间关系的注意力机制。多头自注意力机制可以学习到不同的关注点和依赖关系。

特征融合和分类:将CNN提取的特征和多头自注意力机制学习到的特征进行融合,得到最终的特征表示。然后,使用分类器对特征进行分类预测,识别出故障的类型或状态。

ST-CNN-MSA方法通过结合S变换时频图、CNN和多头自注意力机制,能够充分利用信号的时频信息和空间关系,提高故障多特征分类预测的准确性和鲁棒性。这种方法在故障诊断和预测领域具有一定的应用价值。
注意力机制:注意力机制在多特征分类预测中起到关键作用。它可以学习数据中不同特征的重要性权重,以便更有效地融合多个特征表示。注意力机制可以使模型自动关注对分类任务更有贡献的特征,并降低对无关或冗余特征的依赖。

多特征分类预测:在得到融合后的特征表示之后,通常会使用分类器(如全连接层)进行最终的分类预测。分类器可以将模型的输出映射为表示不同类别概率的向量,从而进行分类预测。

数据集格式:
在这里插入图片描述
注:程序和数据放在一个文件夹

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的故障多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng(0)                  % 使训练集、和测试集的随机划分与适应度函数一致

%%  读取数据
res = xlsread('data.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
Numfeatures = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470687.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【牛客】2024牛客寒假算法基础集训营6ABCDEGHIJ

文章目录 A 宇宙的终结题目大意主要思路代码 B 爱恨的纠葛题目大意主要思路代码 C 心绪的解剖题目大意主要思路代码 D 友谊的套路题目大意主要思路代码 E 未来的预言题目大意主要思路代码 G 人生的起落题目大意主要思路代码 I 时空的交织题目大意主要思路代码 J 绝妙的平衡题目…

ChatGPT调教指南 | 咒语指南 | Prompts提示词教程(三)

在人工智能成为我们日常互动中无处不在的一部分的时代,与大型语言模型(llm)有效沟通的能力是无价的。“良好提示的26条原则”为优化与这些复杂系统的交互提供了全面的指导。本指南证明了人类和人工智能之间的微妙关系,强调清晰、专一和结构化的沟通方法。…

leetcode hot100 买卖股票最佳时机3

本题中,依旧可以采用动态规划来进行解决,之前的两个题我们都是用二维数组dp[i][2]来表示的,其中i表示第i天,2表示长度为2,其中0表示不持有,1表示持有。 本题中,说至多完成两笔交易,也…

RabbitMQ 面试八股题整理

前言:本文是博主网络自行收集的一些RabbitMQ相关八股文,还在准备暑期实习,后续应该会持续更新...... 参考:三天吃透RabbitMQ面试八股文_牛客网 目录 RabbitMQ概述 什么是 RabbitMQ? 说一说RabbitMQ中的AMQP 为什么…

单机取证-信息安全管理与评估-2022年国赛真题-环境+wp

🍬 博主介绍 博主介绍:大家好,我是 Mikey ,很高兴认识大家~ 主攻:【应急响应】 【python】 【数字取证】【单机取证】【流量分析】【MISC】 🎉点赞➕评论➕收藏 == 养成习惯(一键三连)😋 🎉欢迎关注💗一起学习👍一起讨论⭐️一起进步 作者水平有限,欢迎各…

网络层的DDoS攻击与应用层的DDoS攻击之间的区别

DDoS攻击(即“分布是拒绝服务攻击”),是基于DoS的特殊形式的拒绝服务攻击,是一种分布式、协作的大规模攻击方式,主要瞄准一些企业或政府部门的网站发起攻击。根据攻击原理和方式的区别,可以把DDoS攻击分为两…

(done) 如何判断一个矩阵是否可逆?

参考视频:https://www.bilibili.com/video/BV15H4y1y737/?spm_id_from333.337.search-card.all.click&vd_source7a1a0bc74158c6993c7355c5490fc600 这个视频里还暗含了一些引理 1.若 AX XB 且 X 和 A,B 同阶可逆,那么 A 和 B 相似。原因&#xff1…

RDMA内核态函数ib_post_recv()源码分析

接上文,上文分析了内核rdma向发送队列添加发送请求的函数ib_post_send,本文分析一下向接收队列添加接收请求的函数ib_post_recv。其实函数调用流程与上文类似,不再重复说明,可参考链接。 函数调用过程 最终会调用到这个函数 下面…

Stable Diffusion 绘画入门教程(webui)-ControlNet(Inpaint)

上篇文章介绍了语义分割Tile/Blur,这篇文章介绍下Inpaint(重绘) Inpaint类似于图生图的局部重绘,但是Inpain效果要更好一点,和原图融合会更加融洽,下面是案例,可以看下效果(左侧原图…

【Java多线程】对线程池的理解并模拟实现线程池

目录 1、池 1.1、线程池 2、ThreadPoolExecutor 线程池类 3、Executors 工厂类 4、模拟实现线程池 1、池 “池”这个概念见到非常多,例如常量池、数据库连接池、线程池、进程池、内存池。 所谓“池”的概念就是:(提高效率) 1…

pytorch -- ToTensor使用

1. ToTensor定义 导入:from torchvision import transforms 通过transforms.ToTensor解决两个问题(PIL image/numpy.ndarray 转化为 tensor ) ToTensor()返回一个ToTensor的对象(创建具体的工具),传入pic就会返回一个Tensor类型的…

应急响应实战笔记03权限维持篇(4)

第4篇:Linux权限维持--后门篇 本文将对Linux下常见的权限维持技术进行解析,知己知彼百战不殆。 1、一句话添加用户和密码 添加普通用户: # 创建一个用户名guest,密码123456的普通用户 useradd -p openssl passwd -1 -salt sal…

Spring的另一大的特征:AOP

目录 AOP (Aspect Oriented Programming)AOP 入门案例(注解版)AOP 工作流程——代理AOP切入点表达式AOP 通知类型AOP通知获取数据获取切入点方法的参数获取切入点方法返回值获取切入点方法运行异常信息 百度网盘分享链接输入密码数…

[数据集][目标检测]游泳者溺水数据集VOC+YOLO格式2类别895张

数据集制作单位:未来自主研究中心(FIRC) 数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):895 标注数量(xml文件个数)&#xff1a…

第7.1章:StarRocks性能调优——查询分析

目录 一、查看查询计划 1.1 概述 1.2 查询计划树 1.3 查看查询计划的命令 1.3 查看查询计划 二、查看查询Profile 2.1 启用 Query Profile 2.2 获取 Query Profile 2.3 Query Profile结构与详细指标 2.3.1 Query Profile的结构 2.3.2 Query Profile的合并策略 2.…

计算机视觉基础知识(十五)--卷积神经网络

卷积神经网络简介 CNN--卷积神经网络,是一种前馈神经网络;不同于传统的只有线性连接的神经网络;CNN具有卷积(convolution)操作、池化(pooling)和非线性激活函数映射等;经典CNN网络有…

【Linux】--- 详解Linux软件包管理器yum和编辑器vim

目录 一、Linux软件包管理器 - yum1.1 yum和软件包是什么1.2 Linux系统(Centos)的生态1.3 yum相关操作1.4 yum本地配置 二、Linux编辑器 - vim使用2.1 vim的基本概念2.2 vim命令模式命令集2.3 vim末行模式命令集2.4 关于vim的几个相关问题 一、Linux软件包管理器 - yum 1.1 yu…

Codeforce Monsters Attack!(B题 前缀和)

题目描述: 思路: 本人第一次的想法是先杀血量低的第二次想法是先搞坐标近的第三次想法看到数据量这么大, 我先加个和看看貌似我先打谁都行,由此综合一下, 我们可以把每一个不同的坐标当作一轮从最小的坐标开始&#x…

Vue+SpringBoot打造在线课程教学系统

目录 一、摘要1.1 系统介绍1.2 项目录屏 二、研究内容2.1 课程类型管理模块2.2 课程管理模块2.3 课时管理模块2.4 课程交互模块2.5 系统基础模块 三、系统设计3.1 用例设计3.2 数据库设计 四、系统展示4.1 管理后台4.2 用户网页 五、样例代码5.1 新增课程类型5.2 网站登录5.3 课…

机器学习打分函数在分子对接中的应用系列-GB_Score

欢迎浏览我的CSND博客! Blockbuater_drug …点击进入 文章目录 前言一、GB-Score是什么?二、文献复现 -训练和验证环境1. GB score验证虚拟环境的配置2. Usage1- Preparing ligand and protein file2- Generating features3 - Repeat and extend current…