AI论文速读 | 【综述】(LLM4TS)大语言模型用于时间序列

news2025/1/16 11:16:27

题目:Large Language Models for Time Series: A Survey

作者:Xiyuan Zhang , Ranak Roy Chowdhury , Rajesh K. Gupta and Jingbo Shang

机构:加州大学圣地亚哥分校(UCSD)

网址:https://arxiv.org/abs/2402.01801

项目地址:https://github.com/xiyuanzh/awesome-llm-time-series

论文标题和作者
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

摘要

大型语言模型 (LLM) 在自然语言处理和计算机视觉等领域得到了广泛应用。 除了文本、图像和图形之外,LLM还具有分析时间序列数据的巨大潜力,使气候、物联网、医疗保健、交通、音频和金融等领域受益。 这篇综述论文对利用LLM进行时间序列分析的各种方法进行了深入的探索和详细的分类。强调了法学硕士原始文本数据训练与时间序列数据的数值性质之间差距的固有挑战,并探索将LLM知识迁移和蒸馏到数值时间序列分析的策略。 详细介绍了各种方法,包括(1)LLM的直接提示,(2)时间序列量化,(3)对齐技术,(4)利用视觉模态作为桥梁机制,以及(5)LLM与工具的结合 。 此外,这篇综述还全面概述了现有的多模态时间序列和文本数据集,并深入探讨了这一新兴领域的挑战和未来机遇。 同时维护一个最新的 Github 仓库,其中包含论文中所有论文和数据集。

Q: 这篇论文试图解决什么问题?

A: 这篇论文《Large Language Models for Time Series: A Survey》旨在解决如何将大型语言模型(LLMs)应用于时间序列数据分析的问题。具体来说,它探讨了以下几个关键挑战和目标:

  1. 模态差距的桥梁:LLMs原本是针对文本数据进行训练的,而时间序列数据具有连续的数值特性。论文试图探索如何将LLMs的知识迁移到时间序列分析中,以弥合文本数据和数值数据之间的模态差距。
  2. 时间序列分析的应用领域:时间序列分析在多个领域(如气候、物联网、医疗保健、交通、音频和金融)中扮演着关键角色。论文提供了一个详细的分类法,概述了如何利用LLMs分析不同领域中的时间序列数据。
  3. 方法论的探索:论文深入探讨了多种方法,包括直接提示LLMs、时间序列量化、对齐技术、利用视觉模态作为桥梁,以及将LLMs与工具结合等,以实现对时间序列数据的有效分析。
  4. 多模态数据集的概述:论文提供了现有多模态时间序列和文本数据集的全面概述,这些数据集对于训练和评估LLMs在时间序列分析中的应用至关重要。
  5. 挑战与未来方向:论文讨论了在应用LLMs进行时间序列分析时面临的挑战,并提出了未来研究的方向,包括理论理解、多模态和多任务分析、高效算法开发、结合领域知识以及模型定制和隐私保护等。

总的来说,这篇论文试图为如何有效地将LLMs应用于时间序列分析提供一个全面的指南,并为未来的研究提供方向。

Q: 有哪些相关研究?

LLM4TS研究分类(左)及相关论文(右)

A: 这篇论文提到了多项与大型语言模型(LLMs)在时间序列分析中的应用相关的研究。以下是一些代表性的研究工作,它们被归类在不同的方法论类别中:

  1. 直接提示(Prompting):

    • PromptCast [Xue and Salim, 2022]
    • Liu et al. [2023d]
    • TabLLM [Hegselmann et al., 2023]
    • LLMTime [Gruver et al., 2023]

    直接提示

  2. 时间序列量化(Quantization):

    • Auto-TTE [Chung et al., 2023]
    • DeWave [Duan et al., 2023]
    • TOTEM [Anonymous, 2023c]
    • UniAudio [Yang et al., 2023]
    • VioLA [Wang et al., 2023a]
    • AudioGen [Kreuk et al., 2022]

    量化

  3. 对齐(Alignment):

    • ETP [Liu et al., 2023a]
    • King et al. [2023]
    • TEST [Sun et al., 2023]
    • TENT [Zhou et al., 2023b]
    • JoLT [Cai et al., 2023]
    • EEG-to-Text [Wang and Ji, 2022]
    • GPT4TS [Zhou et al., 2023a]

    对齐

  4. 视觉作为桥梁(Vision as Bridge):

    • ImageBind [Girdhar et al., 2023]
    • PandaGPT [Su et al., 2023]
    • IMU2CLIP [Moon et al., 2022]
    • AnyMAL [Moon et al., 2023]
    • CLIP-LSTM [Wimmer and Rekabsaz, 2023]
  5. 工具(Tool):

    • CTG++ [Zhong et al., 2023]
    • ToolLLM [Qin et al., 2023]
    • SHARE [Zhang et al., 2023d]
    • GG-LLM [Graule and Isler, 2023]
    • SCRL-LG [Ding et al., 2023]

这些研究展示了LLMs在时间序列分析中的多样化应用,包括但不限于预测、分类、文本生成、异常检测、插值等任务。这些工作不仅推动了LLMs在时间序列领域的应用,也为未来的研究提供了丰富的理论和实践基础。

5个分类总结

Q: 论文如何解决这个问题?

LLM在不同时间序列任务和领域应用

A: 论文通过以下几个步骤来解决如何将大型语言模型(LLMs)应用于时间序列分析的问题:

  1. 方法论分类:首先,论文提出了一个详细的分类法,将现有的方法分为五个主要类别:直接提示(Prompting)时间序列量化(Quantization)对齐(Alignment)视觉作为桥梁(Vision as Bridge),以及工具(Tool)。这种分类有助于理解不同方法的核心思想和应用场景。

  2. 直接提示:在这一类别中,时间序列数据被当作原始文本直接输入到LLMs。这种方法简单易行,但可能会丢失数值数据的语义信息。

  3. 时间序列量化:为了解决直接提示中的问题,论文探讨了将时间序列数据转换为离散表示的方法。这包括使用向量量化自编码器(VQ-VAE)或K-均值聚类来创建时间序列的离散索引,以便LLMs可以处理。

  4. 对齐技术:这一类别的方法通过训练一个时间序列编码器,将时间序列嵌入与语言模型的语义空间对齐。这可以通过对比学习或使用LLMs作为后端来实现。

  5. 视觉作为桥梁:论文还讨论了如何利用视觉表示作为时间序列和文本数据之间的桥梁。例如,将时间序列数据转换为图像,然后使用视觉语言模型(VLM)进行分析。

  6. 工具集成:在这一类别中,LLMs被用来生成间接工具,如代码或API调用,以辅助时间序列分析任务。这种方法不直接处理时间序列数据,而是通过生成工具来扩展LLMs的能力。

  7. 多模态数据集:论文还提供了一个多模态时间序列和文本数据集的概述,这些数据集对于训练和评估LLMs在时间序列分析中的应用至关重要。多模态数据集

  8. 挑战与未来方向:最后,论文讨论了在应用LLMs进行时间序列分析时面临的挑战,并提出了未来研究的方向,如理论理解、多模态和多任务分析、高效算法开发、结合领域知识以及模型定制和隐私保护。

通过这些步骤,论文不仅提供了一个关于如何应用LLMs进行时间序列分析的全面框架,而且为未来的研究和实践提供了指导。

Q: 论文做了哪些实验?

A: 这篇论文是一篇综述性论文,它并没有直接进行实验,而是对现有的研究进行了深入的探索和分类。论文的主要贡献在于:

  1. 详细分类法:提出了一个关于如何利用大型语言模型(LLMs)进行时间序列分析的详细分类法,包括直接提示、时间序列量化、对齐技术、视觉作为桥梁和工具集成等方法。
  2. 代表性工作分析:对每个分类法中的代表性工作进行了详细的分析,包括它们的数学公式、优势和局限性。
  3. 多模态数据集概述:介绍了现有的多模态时间序列和文本数据集,这些数据集对于训练和评估LLMs在时间序列分析中的应用至关重要。
  4. 挑战与未来方向:讨论了在应用LLMs进行时间序列分析时面临的挑战,并提出了未来研究的方向,如理论理解、多模态和多任务分析、高效算法开发、结合领域知识以及模型定制和隐私保护。
  5. Github资源:维护了一个Github仓库,包含了论文中讨论的所有论文和数据集,以便研究人员和实践者可以访问和利用这些资源。

总的来说,这篇论文通过文献综述的方式,为读者提供了一个关于如何将LLMs应用于时间序列分析的全面视角,而不是通过实验来验证特定的假设或模型。

Q: 有什么可以进一步探索的点?

A: 论文在最后一部分提出了几个可以进一步探索的点,这些点为未来的研究提供了方向。以下是一些潜在的研究方向:

  1. 理论理解:尽管现有的工作展示了LLMs在时间序列分析中的应用,但对这些模型如何理解和处理数值数据的理论基础仍需深入研究。例如,研究LLMs在处理时间序列数据时的通用性、可解释性以及与时间序列分析中传统方法(如傅里叶变换、自回归模型)的关系。
  2. 多模态和多任务分析:目前的研究大多集中在单一模态和单一任务上。未来的工作可以探索如何利用LLMs进行多模态(例如,结合文本、图像和时间序列数据)和多任务(例如,同时进行分类和预测)的分析。
  3. 高效算法:针对大规模时间序列数据,特别是具有长历史信息的数据,需要开发更高效的算法来降低计算复杂度,提高模型的可扩展性和用户体验。
  4. 结合领域知识:将统计领域的知识(如时间序列的季节性分解、自相关分析等)与LLMs相结合,可能会进一步提升模型在特定领域(如金融、医疗)的时间序列分析能力。
  5. 模型定制和隐私保护:研究如何为不同用户定制LLMs,以及如何在保护用户隐私的前提下进行模型训练和应用,特别是在涉及敏感数据(如医疗记录)的场景中。
  6. 跨领域迁移学习:探索LLMs在不同领域之间的迁移学习能力,例如,将一个在金融领域训练好的模型迁移到医疗领域,以及如何有效地利用领域间的相似性和差异性。
  7. 实时分析和交互:研究如何使LLMs能够实时处理和分析时间序列数据,以及如何提高模型与用户之间的交互性,使其在实际应用中更加灵活和实用。
  8. 模型鲁棒性和泛化能力:研究LLMs在面对噪声、异常值和数据分布变化时的鲁棒性,以及如何提高模型在不同数据集上的泛化能力。

这些研究方向不仅有助于推动LLMs在时间序列分析领域的应用,还可能为整个人工智能领域带来新的理论和实践突破。

Q: 总结一下论文的主要内容

A: 这篇论文《Large Language Models for Time Series: A Survey》主要内容包括以下几个方面:

  1. 背景介绍:论文首先介绍了时间序列分析在多个领域(如气候、物联网、医疗保健、交通、音频和金融)的重要性,并指出了传统方法和深度学习方法在这一领域的应用。接着,论文强调了大型语言模型(LLMs)在自然语言处理(NLP)和计算机视觉(CV)领域的成功,并探讨了将LLMs应用于时间序列分析的潜力。
  2. 问题阐述:论文明确了LLMs在处理时间序列数据时面临的主要挑战,即如何将原本针对文本数据训练的模型应用于连续数值数据的时间序列分析。
  3. 方法论分类:论文提出了一个详细的分类法,将利用LLMs进行时间序列分析的方法分为五个主要类别:直接提示(Prompting)、时间序列量化(Quantization)、对齐(Alignment)、视觉作为桥梁(Vision as Bridge),以及工具(Tool)。
  4. 代表性工作:对于每个分类,论文详细介绍了代表性的研究工作,包括它们的数学公式、优势和局限性。
  5. 多模态数据集:论文提供了一个多模态时间序列和文本数据集的全面概述,这些数据集对于训练和评估LLMs在时间序列分析中的应用至关重要。
  6. 挑战与未来方向:论文讨论了在应用LLMs进行时间序列分析时面临的挑战,并提出了未来研究的方向,如理论理解、多模态和多任务分析、高效算法开发、结合领域知识以及模型定制和隐私保护。
  7. 资源提供:论文维护了一个Github仓库,包含了论文中讨论的所有论文和数据集,以便研究人员和实践者可以访问和利用这些资源。

总的来说,这篇论文为如何将LLMs应用于时间序列分析提供了一个全面的框架,并为未来的研究和实践提供了指导。

Github仓库

该仓库维护了目前有关LLM4TS的相关论文,按照5个分类进行了分门别类。分别记录了他们的:发表日期,论文名称,机构,会议/期刊,领域,任务和模型架构

提示

量化

对齐

视觉桥梁

工具

-ZUL469Zo-1708842687434)]

[外链图片转存中…(img-rjMWR1zp-1708842687435)]

[外链图片转存中…(img-fHKtrkVO-1708842687435)]

[外链图片转存中…(img-LpOQx0rv-1708842687435)]

多模态数据集

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470587.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

istio系列教程

istio学习记录——安装https://suxueit.com/article_detail/otVbfI0BWZdDRfKqvP3Gistio学习记录——体验bookinfo及可视化观测https://suxueit.com/article_detail/o9VdfI0BWZdDRfKqlv0r istio学习记录——kiali介绍https://suxueit.com/article_detail/pNVbfY0BWZdDRfKqX_0K …

Gemini 模型将被引入Performance Max

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

计算机设计大赛 深度学习图像风格迁移 - opencv python

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题…

Python爬虫进阶:爬取在线电视剧信息与高级检索

简介: 本文将向你展示如何使用Python创建一个能够爬取在线电视剧信息的爬虫,并介绍如何实现更高级的检索功能。我们将使用requests和BeautifulSoup库来爬取数据,并使用pandas库来处理和存储检索结果。 目录 一、爬取在线电视剧信息 …

顺序表知识点——顺序表的增删查改

目录 准备文件 创建顺序表蓝图 顺序表初始化函数接口 顺序表的销毁函数接口 顺序表的打印函数接口 顺序表的插入函数接口 顺序表的删除函数接口 从本节开始, 复习数据结构。 空间复杂度还有时间复杂度之后利用例题学习。 这节先学习顺序表的增删查改。 首…

【基于Ubuntu20.04的Autoware.universe安装过程】方案一:虚拟机 | 详细记录 | Vmware | 全过程图文 by.Akaxi

目录 一、Autoware.universe背景 二、虚拟机配置 三、Ubuntu20.04安装 四、GPU显卡安装 五、ROS2-Galactic安装 六、ROS2-dev-tools安装 七、rmw-implementation安装 八、pacmod安装 九、autoware-core安装 十、autoware universe dependencies安装 十一、安装pre-c…

JSONVUE

1.JSON学习 1.概念: JSON是把JS对象变成字符串. 2.作用: 多用于网络中数据传输. JavaScript对象 let person{name:"张三",age:18}//将JS对象转换为 JSON数据let person2JSON{"name":"张三","age":18}; 3.JS对象与JSON字符串转换…

力扣随笔删除有序数组中的重复项(简单26)

思路:根据类似于滑动窗口的思想,定义一个指针;使指针左边的区域全部为不重复元素(包括指针所指的数字) 以示例2为例,left:红色加粗 遍历指针i:黑色加粗 窗口范围,左边界到…

市场复盘总结 20240223

仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整,采用龙空龙模式 一支股票 10%的时候可以操作, 90%的时间适合空仓等待 二进三: 进级率中 57% 最常用的…

检索增强生成(RAG) — 高级提示工程方法

Thread of Thought,ThoT Thread of Thought Unraveling Chaotic Contexts 大型语言模型(LLMs)在自然语言处理领域开启了一个变革的时代,在文本理解和生成任务上表现出色。然而,当面对混乱的上下文环境(例…

Kotlin多线程

目录 线程的使用 线程的创建 例一:创建线程并输出Hello World Thread对象的用法 start() join() interrupt() 线程安全 原子性 可见性 有序性 线程锁 ReentrantLock ReadWriteLock 线程的使用 Java虚拟机中的多线程可以1:1映射至CPU中,即…

1298 - 摘花生问题

题目描述 Hello Kitty 想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有…

Git命令操作

什么是Git? Git是⼀个免费的,开源的分布式版本控制软件系统 git区域 存储区域:Git软件⽤于存储资源得区域。⼀般指得就是.git⽂件夹 ⼯作区域:Git软件对外提供资源得区域,此区域可⼈⼯对资源进⾏处理。 暂存区&am…

Mendix 开发实践指南|Mendix的核心概念

在当今快速变化的技术环境中,Mendix平台以模型驱动开发方法,重新定义了应用程序的构建过程。本章内容,将深入探讨Mendix的几大核心概念:模型驱动开发、微流、纳流 、 实体模型和页面,旨在帮助我们全面理解Mendix平台的…

蓝桥杯-顺子日期

解答加解析 #include<iostream> using namespace std; int main() { //日期分别是:2022.01.20~29 10天 //10.12 11.23 12.30 12.31 //总体思路就是123 012 其他组合不能出现 cout<<"14"; return 0; }

全志H713/H618方案:调焦电机(相励磁法步进电机)的驱动原理、适配方法

一、篇头 全志H713平台&#xff0c;作为FHD投影的低成本入门方案&#xff0c;其公板上也配齐了许多投影使用的模组&#xff0c;本文即介绍投影仪调焦所用的步进电机&#xff0c;此模组的驱动原理、配制方法、调试方法。因为条件限制&#xff0c;本文采用的是H618香橙派Z3平台&…

模仿蜘蛛工作原理 苏黎世联邦理工学院研发牛油果机器人可在雨林树冠穿行

对于野外环境生物监测的研究人员来讲&#xff0c;收集生物多样性数据已成为日常工作重要组成部分&#xff0c;特别是对于热带雨林的茂密树冠当中活跃着非常多的动物、昆虫与植物。每次勘察都需要研究人员爬上茂密树冠收集数据&#xff0c;一方面增加了数据收集难度&#xff0c;…

Unity(第五部)新手图层和标签的理解

1、标记用于在物体上显示名字&#xff0c;方便开发 2、标签&#xff08;某一类物体&#xff0c;方便给某一类进行组件脚本编写&#xff09; 而且有了标签之后&#xff0c;我们在写代码的时候就可以直接通过标签找到一系列我们需要的游戏物体了 Untagged未标记Respawn重生Edi…

【hashmap】【将排序之后的字符串作为哈希表的键】【获取 HashMap 中所有值的集合】Leetcode 49 字母异位词分组

【hashmap】【将排序之后的字符串作为哈希表的键】【获取 HashMap 中所有值的集合】Leetcode 49 字母异位词分组 解法1 将排序之后的字符串作为哈希表的键解法2 在解法一的基础上加入了getOrDefault ---------------&#x1f388;&#x1f388;题目链接&#x1f388;&#x1f3…

在 where子句中使用子查询(二)

目录 ANY ANY &#xff1a;功能上与 IN 是没有任何区别的 >ANY &#xff1a;比子查询返回的最小值要大 ALL >AL &#xff1a;比子查询返回的最大值要大 EXISTS() 判断 NOT EXISTS Oracle从入门到总裁:https://blog.csdn.net/weixin_67859959/article/details/135209…