pclpy 最小二乘法拟合平面

news2025/1/16 17:00:40

pclpy 最小二乘法拟合平面

      • 一、算法原理
      • 二、代码
      • 三、结果
          • 1.左边原点云、右边最小二乘法拟合平面后点云投影
      • 四、相关数据

一、算法原理

平面方程的一般表达式为:
A x + B y + C z + D = 0 ( C ≠ 0 ) Ax + By + Cz + D = 0 \quad (C\neq0) Ax+By+Cz+D=0(C=0)
即:
Z = − A C x − B C y − D C Z = -\frac{A}{C}x-\frac{B}{C}y-\frac{D}{C} Z=CAxCByCD
记:
a 0 = − A C , a 1 = − B C , a 2 = − D C a_0 = -\frac{A}{C}, a_1 =-\frac{B}{C}, a_2=-\frac{D}{C} a0=CA,a1=CB,a2=CD
所以:
Z = a 0 x + a 1 y + a 2 Z = a_0x + a_1y + a_2 Z=a0x+a1y+a2
要用该 n 个点拟合平面方程,即使:
∑ n = 1 N ( a 0 x + a 1 y + a 2 ) 2 − > m i n \sum_{n=1}^{N}{(a_0x + a_1y + a_2)^2}->min n=1N(a0x+a1y+a2)2>min
要使S最小,对a,b,c求偏导

在这里插入图片描述

改写成矩阵的形式为:

在这里插入图片描述

二、代码

from pclpy import pcl
import numpy as np


def CloudShow(cloud1, cloud2):
    """
    Args:在一个窗口可视化多个点云
        cloud1: 点云数据1
        cloud2: 点云数据2
    """
    viewer = pcl.visualization.PCLVisualizer("viewer")  # 建立可刷窗口对象 窗口名 viewer
    v0 = 1  # 设置标签名(0, 1标记第一个窗口)
    viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v0)  # 创建一个可视化的窗口
    viewer.setBackgroundColor(0.0, 0.0, 0.0, v0)  # 设置窗口背景为黑色
    single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud1, 255.0, 0, 0.0)  # 将点云设置为红色
    viewer.addPointCloud(cloud1,  # 要添加到窗口的点云数据。
                         single_color,  # 指定点云的颜色
                         "sample cloud1",  # 添加的点云命名
                         v0)  # 点云添加到的视图

    v1 = 2  # 设置标签名(2代表第二个窗口)
    viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v1)  # 创建一个可视化的窗口
    viewer.setBackgroundColor(255.0, 255.0, 255.0, v1)  # 设置窗口背景为白色
    single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud2, 0.0, 255.0, 0.0)  # 将点云设置为绿色
    viewer.addPointCloud(cloud2,  # 要添加到窗口的点云数据。
                         single_color,  # 指定点云的颜色
                         "sample cloud2",  # 添加的点云命名
                         v1)  # 点云添加到的视图

    # 设置点云窗口(可移除对点云可视化没有影响)
    viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小
                                            1,  # 点云像素
                                            "sample cloud1",  # 识别特定点云
                                            v0)  # 在那个窗口可视化
    viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小
                                            1,  # 点云像素
                                            "sample cloud2",  # 识别特定点云
                                            v1)  # 在那个窗口可视化
    # viewer.addCoordinateSystem(1.0)  # 设置坐标轴 坐标轴的长度为1.0
    # 窗口建立
    while not viewer.wasStopped():
        viewer.spinOnce(10)


def plane(cloud, normal_vector):
    coeffs = pcl.ModelCoefficients()  # 创建了一个模型系数对象
    coeffs.values.append(normal_vector[0])  # a = 0.0
    coeffs.values.append(normal_vector[1])  # b = 0.0
    coeffs.values.append(normal_vector[2])  # c = 1.0
    coeffs.values.append(normal_vector[3])  # d = 0.0

    # 创建滤波器
    proj = pcl.filters.ProjectInliers.PointXYZ()  # 过滤器对象 proj,用于将点云投影到一个模型上。
    proj.setModelType(0)  # 模型类型被设为 0,代表使用平面模型。
    proj.setInputCloud(cloud)  # 将cloud点云数据进行处理
    proj.setModelCoefficients(coeffs)  # 处理参数coeffs
    cloud_projected = pcl.PointCloud.PointXYZ()  # 建立保存点云
    proj.filter(cloud_projected)  # 将投影结果保存

    return cloud_projected

if __name__ == '__main__':
    cloud1 = pcl.PointCloud.PointXYZ()
    reader = pcl.io.PCDReader()  # 设置读取对象
    reader.read('res/bunny.pcd', cloud1)  # 读取点云保存在cloud中

    # 调用函数,生成离散点
    x, y, z = cloud1.x, cloud1.y, cloud1.z
    N =  cloud1.size()
    # ------------------------构建系数矩阵-----------------------------
    A = np.array([[sum(x ** 2), sum(x * y), sum(x)],
                  [sum(x * y), sum(y ** 2), sum(y)],
                  [sum(x), sum(y), N]])

    B = np.array([[sum(x * z), sum(y * z), sum(z)]])

    # 求解
    X = np.linalg.solve(A, B.T)
    print('平面拟合结果为:z = %.3f * x + %.3f * y + %.3f' % (X[0], X[1], X[2]))
    a, b, c, d = X[0], X[1], -1, X[2]
    plane_cloud = plane(cloud1, [a, b, c, d])  # 获得投影后的点云数据

    # ------------------ 可视化点云 -----------------
    CloudShow(cloud1, plane_cloud) 

三、结果

1.左边原点云、右边最小二乘法拟合平面后点云投影

在这里插入图片描述

四、相关数据

最小二乘法拟合参考链接:最小二乘拟合平面(python/C++版) - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470524.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【深度学习笔记】 3_13 丢弃法

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 3.13 丢弃法 除了前一节介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)[1] 来应对过拟合…

HDL FPGA 学习 - Quartus II 工程搭建,ModelSim 仿真,时序分析,IP 核使用,Nios II 软核使用,更多技巧和规范总结

目录 工程搭建、仿真与时钟约束 一点技巧 ModelSim 仿真 Timing Analyzer 时钟信号约束 SignalTap II 使用 In-System Memory Content Editor 使用 记录 QII 的 IP 核使用 记录 Qsys/Nios II 相关 记录 Qsys 的 IP 核使用 封装 Avalon IP 更多小技巧教程文章 更多好…

【C语言】linux内核ipoib模块 - ipoib_tx_poll

一、中文注释 这段代码是 Linux 内核网络栈中与 InfiniBand 协议相关的一个部分,特别是与 IP over InfiniBand (IPoIB)相关。该函数负责去处理IPoIB的发送完成队列(发送CQ)上的工作请求(work completions)。以下是对这…

前后端分离Vue+ElementUI+nodejs蛋糕甜品商城购物网站95m4l

本文主要介绍了一种基于windows平台实现的蛋糕购物商城网站。该系统为用户找到蛋糕购物商城网站提供了更安全、更高效、更便捷的途径。本系统有二个角色:管理员和用户,要求具备以下功能: (1)用户可以修改个人信息&…

YOLO系列论文阅读(v1--v3)

搞目标检测,绕不开的一个框架就是yolo,而且更糟糕的是,随着yolo的发展迭代,yolo网络可以做的事越来越多,语义分割,关键点检测,3D目标检测。。。这几天决定把YOLO系列彻底梳理一下,在…

奇异递归模板模式应用6-类模板enable_shared_from_this

异步编程中存在一种场景,需要在类中将该类的对象注册到某个回调类或函数中,不能简单地将this传递给回调类中,很可能因为回调时该对象不存在而导致野指针访问(也有可能在析构函数解注册时被回调,造成对象不完整&#xf…

【变压器故障诊断分类及预测】基于GRNN神经网络

课题名称:基于GRNN神经网络的变压器故障诊断分类及预测 版本日期:2024-02-10 运行方式:直接运行GRNN0507.m文件 代码获取方式:私信博主或QQ:491052175 模型描述: 对变压器油中溶解气体进行分析是变压器…

基于springboot+vue的精准扶贫管理系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

前端工程化面试题 | 15.精选前端工程化高频面试题

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Linux系统前后端分离项目

目录 一.jdk安装 二.tomcat安装 三.MySQL安装 四.nginx安装 五.Nginx负载均衡tomcat 六.前端部署 一.jdk安装 1. 上传jdk安装包 jdk-8u151-linux-x64.tar.gz 进入opt目录,将安装包拖进去 2. 解压安装包 这里需要解压到usr/local目录下,在这里新建一个…

基于yolov5的电瓶车和自行车检测系统,可进行图像目标检测,也可进行视屏和摄像检测(pytorch框架)【python源码+UI界面+功能源码详解】

功能演示: 基于yolov5的电瓶车和自行车检测系统_哔哩哔哩_bilibili (一)简介 基于yolov5的电瓶车和自行车检测系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型…

低于API等级30的应用将无法在上述应用商店

minSdkVersion minSdkVersion用于指定应用兼容的最低Android版本(API等级)。 如果APP某些功能无法支持低版本Android系统的设备,可以配置minSdkVersion确保APP只能安装到指定Android版本以上的设备。HBuilder|HBuilderX中可在manifest.json中…

单词倒排——c语言解法

以下是题目: 这个题中有三个点, 一个是将非字母的字符转换为空格, 第二是如果有两个连续的空格, 那么就可以将这两个连续的空格变成一个空格。 第三个点就是让单词倒排。 那么我们就可以将这三个点分别封装成三个函数。 还有就是…

Spring Security源码学习

Spring Security本质是一个过滤器链 过滤器链本质是责任链设计模型 1. HttpSecurity 【第五篇】深入理解HttpSecurity的设计-腾讯云开发者社区-腾讯云 在以前spring security也是采用xml配置的方式&#xff0c;在<http>标签中配置http请求相关的配置&#xff0c;如用户…

Linux下的版本控制系统——Git:初学者指南

引言 在软件开发的世界中&#xff0c;版本控制是一项至关重要的技术。它允许开发者追踪和管理代码的变更历史&#xff0c;协同工作&#xff0c;并在必要时恢复到之前的版本。而在Linux系统下&#xff0c;Git已经成为事实上的版本控制标准。本文将带领大家走进Git的世界&#x…

【人脸朝向识别与分类预测】基于PNN神经网络

课题名称&#xff1a;基于PNN神经网络的人脸朝向识别分类 版本日期&#xff1a;2024-02-20 运行方式&#xff1a;直接运行PNN0503.m文件 代码获取方式&#xff1a;私信博主或 QQ:491052175 模型描述&#xff1a; 采集到一组人脸朝向不同角度时的图像&#xff0c;图像来自不…

React组件详解

React组件分为两大类 1.函数组件 2.类组件&#xff08;最常用&#xff09; 组件化 import ReactDom from "react-dom";// // 1.通过函数创建一个组件 // 2.函数名字必须大写开头 // 3.函数必须有返回值 function Func1() {return <h2>这是一个基础组件</h…

[设计模式Java实现附plantuml源码~行为型]对象间的联动~观察者模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…

数字化转型导师鹏:政府数字化转型政务服务类案例研究

政府数字化转型政务服务类案例研究 课程背景&#xff1a; 很多地方政府存在以下问题&#xff1a; 不清楚标杆省政府数字化转型的政务服务类成功案例 不清楚地级市政府数字化转型的政务服务类成功案例 不清楚县区级政府数字化转型的政务服务类成功案例 课程特色&#x…

PX4FMU和PX4IO最底层启动过程分析(下)

PX4FMU和PX4IO最底层启动过程分析&#xff08;下&#xff09; PX4FMU的系统启动函数为nash_main(int argc,char *argv[]) PX4IO的系统启动函数为nash_start(int argc,char *argv[]) PX4FMU启动函数nash_main(int argc,char *argv[]) 首先分析一下nash_main(int argc,char *a…