【变压器故障诊断分类及预测】基于GRNN神经网络

news2025/1/16 17:46:27

课题名称:基于GRNN神经网络的变压器故障诊断分类及预测

版本日期:2024-02-10

运行方式:直接运行GRNN0507.m文件

代码获取方式:私信博主或QQ:491052175

模型描述:

对变压器油中溶解气体进行分析是变压器内部故障诊断的重要手段。我国当前大量应用的是改良三比值法,但利用三比值法作为变压器故障诊断的依据存在两方面的不足,即所谓编码缺损和临界值判据缺损。当前变压器故障诊断系统大多数都是采用BP网络模型,但由于BP网络自身结构的点,在训练样本较大且要求精度较高时,网络常常不收敛且容易陷入局部最优。油中溶解气体分析的方法能很好地反映变压器的潜伏性故障,且在各种诊断方法中以改良三比值法的判断准确率最高,所以选择油中溶解气体含量的三对比值作为神经网络的输入特征向量而输出特征向量则选用变压器的故障类型。概率神经网络结构简单,训练简洁,利用概率神经网络模型的强大的非线性分类能力,将故障样本空间映射到故障模式空间中,可形成一个具有较强容错能力和结构自适应能力的诊断网络系统,从而提高故障诊断的准确率。

算法流程:

1. 收集数据:数据中的data.mat是33*4维的矩阵,前三列为改良三比值法数据,第4列为分类输出,也就是故障的类别。使用前23个样本作为PNN训练样本,后10个样本作为测试样本

2. 创建GRNN神经网络:利用Matlab自带的神经网络工具箱中的函数newgrnn()可以构建一个GRNN神经网络。

3. 根据已有故障数据进行训练:将训练数据输入网络,便可以对网络进行训练

4. 网络效果测试:将测试数据代入到GRNN神经网络进行预测得到预测数据

5. 结果分析:通过对比测试数据中变压器实际故障类型和PNN预测的故障类型来验证PNN神经网络的预测精度

GRNN神经网络函数调用形式:

其调用格式为net=newgrnn(P,T,SPREAD),其中:

P为Q组输入向量组成的R*Q维矩阵,即输入数据矩阵

T为Q组目标分类向量组成的S*Q维矩阵,即输出数据矩阵

SPREAD为径向基函数的扩展速度,默认值为1

改进方向:

标准程序无改进

待改进方向:

可以研究一下Spread值对于GRNN神经网络的影响,选择最佳Spread值应用到GRNN神经网络上

特殊说明:

1. 经过多次测试SPREAD值为默认值时,预测效果相对较好

2. 神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值

Matlab仿真结果:

基于GRNN神经网络的变压器故障诊断的预测精度:

基于GRNN神经网络的变压器故障诊断的训练数据预测和误差:

基于GRNN神经网络的变压器故障诊断的测试数据预测和误差:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470511.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于springboot+vue的精准扶贫管理系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

前端工程化面试题 | 15.精选前端工程化高频面试题

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Linux系统前后端分离项目

目录 一.jdk安装 二.tomcat安装 三.MySQL安装 四.nginx安装 五.Nginx负载均衡tomcat 六.前端部署 一.jdk安装 1. 上传jdk安装包 jdk-8u151-linux-x64.tar.gz 进入opt目录,将安装包拖进去 2. 解压安装包 这里需要解压到usr/local目录下,在这里新建一个…

基于yolov5的电瓶车和自行车检测系统,可进行图像目标检测,也可进行视屏和摄像检测(pytorch框架)【python源码+UI界面+功能源码详解】

功能演示: 基于yolov5的电瓶车和自行车检测系统_哔哩哔哩_bilibili (一)简介 基于yolov5的电瓶车和自行车检测系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型…

低于API等级30的应用将无法在上述应用商店

minSdkVersion minSdkVersion用于指定应用兼容的最低Android版本(API等级)。 如果APP某些功能无法支持低版本Android系统的设备,可以配置minSdkVersion确保APP只能安装到指定Android版本以上的设备。HBuilder|HBuilderX中可在manifest.json中…

单词倒排——c语言解法

以下是题目: 这个题中有三个点, 一个是将非字母的字符转换为空格, 第二是如果有两个连续的空格, 那么就可以将这两个连续的空格变成一个空格。 第三个点就是让单词倒排。 那么我们就可以将这三个点分别封装成三个函数。 还有就是…

Spring Security源码学习

Spring Security本质是一个过滤器链 过滤器链本质是责任链设计模型 1. HttpSecurity 【第五篇】深入理解HttpSecurity的设计-腾讯云开发者社区-腾讯云 在以前spring security也是采用xml配置的方式&#xff0c;在<http>标签中配置http请求相关的配置&#xff0c;如用户…

Linux下的版本控制系统——Git:初学者指南

引言 在软件开发的世界中&#xff0c;版本控制是一项至关重要的技术。它允许开发者追踪和管理代码的变更历史&#xff0c;协同工作&#xff0c;并在必要时恢复到之前的版本。而在Linux系统下&#xff0c;Git已经成为事实上的版本控制标准。本文将带领大家走进Git的世界&#x…

【人脸朝向识别与分类预测】基于PNN神经网络

课题名称&#xff1a;基于PNN神经网络的人脸朝向识别分类 版本日期&#xff1a;2024-02-20 运行方式&#xff1a;直接运行PNN0503.m文件 代码获取方式&#xff1a;私信博主或 QQ:491052175 模型描述&#xff1a; 采集到一组人脸朝向不同角度时的图像&#xff0c;图像来自不…

React组件详解

React组件分为两大类 1.函数组件 2.类组件&#xff08;最常用&#xff09; 组件化 import ReactDom from "react-dom";// // 1.通过函数创建一个组件 // 2.函数名字必须大写开头 // 3.函数必须有返回值 function Func1() {return <h2>这是一个基础组件</h…

[设计模式Java实现附plantuml源码~行为型]对象间的联动~观察者模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…

数字化转型导师鹏:政府数字化转型政务服务类案例研究

政府数字化转型政务服务类案例研究 课程背景&#xff1a; 很多地方政府存在以下问题&#xff1a; 不清楚标杆省政府数字化转型的政务服务类成功案例 不清楚地级市政府数字化转型的政务服务类成功案例 不清楚县区级政府数字化转型的政务服务类成功案例 课程特色&#x…

PX4FMU和PX4IO最底层启动过程分析(下)

PX4FMU和PX4IO最底层启动过程分析&#xff08;下&#xff09; PX4FMU的系统启动函数为nash_main(int argc,char *argv[]) PX4IO的系统启动函数为nash_start(int argc,char *argv[]) PX4FMU启动函数nash_main(int argc,char *argv[]) 首先分析一下nash_main(int argc,char *a…

2023最新盲盒交友脱单系统源码

源码获取方式 搜一搜&#xff1a;万能工具箱合集 点击资源库直接进去获取源码即可 如果没看到就是待更新&#xff0c;会陆续更新上 或 源码软件库 最新盲盒交友脱单系统源码&#xff0c;纸条广场&#xff0c;单独抽取/连抽/同城抽取/高质量盒子 新增功能包括心动推荐&#xff…

JavaAPI常用类02

目录 基本数据类型封装类 包装类常用属性方法 8中基本数据类型各自所对应的包装类 以下方法以java.lang.Integer为例 代码 运行 装箱和拆箱 装箱 何为装箱 代码 范围问题 代码 运行 拆箱 代码 String类 概述 代码 运行 创建形式 画图讲解 代码 运行 构造…

golang通过http访问外部网址

不同项目之前,通过http访问,进行数据沟通 先设定一个接口,确认外部能访问到 PHP写一个接口 public function ceshi_return() {$data $this->request->param();$id $data[id];$res Db::name(user)->field(id,status,price,name)->where([id>$id])->find…

数据可视化基础与应用-01-课程目标与职位分析

总结 本系列是数据可视化基础与应用的第01篇&#xff0c;主要介绍本门课程的课程目标与职位分析 教材 数据可视化基础与应用 课程教学方法 布鲁姆教学法 认知领域&#xff08;cognitive domain&#xff09; 1.知道&#xff08;知识&#xff09;&#xff08;knowledge&#…

Jitsi Meet 大型视频会议调优方案

jitsi meet 大型视频会议调优方案 在举办一些大型会议的时候,比如100个人会议,为了节约宽带和节省资源,我们并不会选择传输全部的音视频资源。 举个例子,比如100个人线下会议,如果大家都说话的情况下,大家要么听不清,要么听得是声音最大的那几个人。 视频会议也可以借…

数据结构之顺序表链表

一、线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列、字符串... 线性表在逻辑上是线性结构&#xff0c;也就说是连续的一条直…

模型 OIIC(目标、障碍、洞察、挑战)

系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_总纲目录。沟通方案工具。 1 OIIC(目标、障碍、洞察、挑战)模型的应用 1.1 OIIC 驱动的汽车配件渠道优化 一家知名的汽车配件制造商&#xff0c;旗下品牌拥有众多产品&#xff0c;其销售渠道广泛&#xff0c;不仅在…