【广度优先搜索】【网格】【割点】1263. 推箱子

news2025/1/20 12:05:09

作者推荐

视频算法专题

涉及知识点

广度优先搜索 网格 割点 并集查找

LeetCode:1263. 推箱子

「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。
游戏地图用大小为 m x n 的网格 grid 表示,其中每个元素可以是墙、地板或者是箱子。
现在你将作为玩家参与游戏,按规则将箱子 ‘B’ 移动到目标位置 ‘T’ :
玩家用字符 ‘S’ 表示,只要他在地板上,就可以在网格中向上、下、左、右四个方向移动。
地板用字符 ‘.’ 表示,意味着可以自由行走。
墙用字符 ‘#’ 表示,意味着障碍物,不能通行。
箱子仅有一个,用字符 ‘B’ 表示。相应地,网格上有一个目标位置 ‘T’。
玩家需要站在箱子旁边,然后沿着箱子的方向进行移动,此时箱子会被移动到相邻的地板单元格。记作一次「推动」。
玩家无法越过箱子。
返回将箱子推到目标位置的最小 推动 次数,如果无法做到,请返回 -1。
示例 1:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“.”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
在这里插入图片描述

输出:3
解释:我们只需要返回推箱子的次数。
示例 2:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“#”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:-1
示例 3:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“.”,“.”,“#”,“#”],
[“#”,“.”,“#”,“B”,“.”,“#”],
[“#”,“.”,“.”,“.”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:5
解释:向下、向左、向左、向上再向上。

提示:

m == grid.length
n == grid[i].length
1 <= m, n <= 20
grid 仅包含字符 ‘.’, ‘#’, ‘S’ , ‘T’, 以及 ‘B’。
grid 中 ‘S’, ‘B’ 和 ‘T’ 各只能出现一个。

01广度优先搜索

状态:箱子所在行列,人所在行列
人试图向上下左右移动。以左移为例。
{ 如果人可以左移,人左移,加到队首 箱子不在左边 如果人和箱子都可以左移,人箱子左移,加到队尾 箱子在人左边 \begin{cases} 如果人可以左移,人左移,加到队首 & 箱子不在左边\\ 如果人和箱子都可以左移,人箱子左移,加到队尾 &箱子在人左边\\ \end{cases} {如果人可以左移,人左移,加到队首如果人和箱子都可以左移,人箱子左移,加到队尾箱子不在左边箱子在人左边
妙在无需考虑: 箱子对人的影响。

代码

核心代码

class CBFS
{
public:
	CBFS(int iStatuCount, int iInit = -1):m_iStatuCount(iStatuCount),m_iInit(iInit)
	{
		m_res.assign(iStatuCount, iInit);
	}
	bool Peek(int& statu)
	{
		if (m_que.empty())
		{
			return false;
		}
		statu = m_que.front();
		m_que.pop_front();
		return true;
	}
	void PushBack(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_back(statu);
	}
	void PushFront(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_front(statu);
	}
	int Get(int statu)
	{
		return m_res[statu];
	}
private:
	const int m_iStatuCount;
	const int m_iInit;
	deque<int> m_que;
	vector<int> m_res;
};

class CBFS2 : protected CBFS
{
public:
	CBFS2(int iStatuCount1,int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit ), m_iStatuCount2(iStatuCount2)
	{
		
	}
	bool Peek(int& statu1,int& statu2 )
	{
		int statu;
		if (!CBFS::Peek(statu))
		{
			return false;
		}
		statu1 = statu / m_iStatuCount2;
		statu2 = statu % m_iStatuCount2;
		return true;
	}
	void PushBack(int statu1,int statu2, int value)
	{
		CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);
	}
	void PushFront(int statu1, int statu2, int value)
	{
		CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);
	}
	int Get(int statu1, int statu2)
	{
		return CBFS::Get(statu1 * m_iStatuCount2 + statu2);
	}
private:
	const int m_iStatuCount2;
};

class CBFS3 : protected CBFS2
{
public:
	CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3)
	{

	}
	bool Peek(int& statu1, int& statu2,int& statu3 )
	{
		int statu23;
		if (!CBFS2::Peek(statu1,statu23))
		{
			return false;
		}
		statu2 = statu23 / m_iStatuCount3;
		statu3 = statu23 % m_iStatuCount3;
		return true;
	}
	void PushBack(int statu1, int statu2,int statu3, int value)
	{
		CBFS2::PushBack(statu1 , statu2*m_iStatuCount3+statu3, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int value)
	{
		CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);
	}
	int Get(int statu1, int statu2, int statu3)
	{
		return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);
	}
	const int m_iStatuCount3;
};

class CBFS4 : protected CBFS3
{
public:
	CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4)
	{

	}
	bool Peek(int& statu1, int& statu2, int& statu3,int& statu4)
	{
		int statu34;
		if (!CBFS3::Peek(statu1, statu2,statu34))
		{
			return false;
		}
		statu3 = statu34 / m_iStatuCount4;
		statu4 = statu34 % m_iStatuCount4;
		return true;
	}
	void PushBack(int statu1, int statu2, int statu3,int statu4, int value)
	{
		CBFS3::PushBack(statu1, statu2 , statu3* m_iStatuCount4+ statu4, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int statu4, int value)
	{
		CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
	}
	int Get(int statu1, int statu2, int statu3, int statu4)
	{
		return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);
	}
	const int m_iStatuCount4;
};

template<class T>
class CEnumGrid
{
public:
	static  void EnumGrid(const vector<vector<T>>& grid,std::function<void(int,int,T)> call )
	{
		for (int r = 0; r < grid.size(); r++)
		{
			for (int c = 0; c < grid.front().size(); c++)
			{
				call(r, c, grid[r][c]);
			}
		}
	}
};
class Solution {
public:
	int minPushBox(vector<vector<char>>& grid) {
		m_r = grid.size();
		m_c = grid[0].size();
		int move[4][2] = { {1,0},{-1,0},{0,1},{0,-1} };
		auto CanMove = [&grid](int r, int c)
		{
			if ((r < 0) || (r >= grid.size()))
			{
				return false;
			}
			if ((c < 0) || (c >= grid[0].size()))
			{
				return false;
			}
			return '#' != grid[r][c];
		};
		int sr, sc, br, bc,tr,tc;
		CEnumGrid<char>::EnumGrid(grid, [&](int r, int c, char ch)
			{
				if ('B' == ch)
				{
					br = r;
					bc = c;
				}
				if ('S' == ch)
				{
					sr = r;
					sc = c;
				}
				if ('T' == ch)
				{
					tr = r;
					tc = c;
				}
			});
		CBFS4 bfs(m_r, m_c, m_r, m_c);
		bfs.PushBack(sr, sc, br, bc, 0);
		int r1, c1, r2, c2;
		while (bfs.Peek(r1, c1, r2, c2))
		{
			const int dis = bfs.Get(r1, c1, r2, c2);
			if ((r2 == tr) && (c2 == tc))
			{
				return dis;
			}
			for (const auto& [mr,mc] : move)
			{
				auto r3 = r1 + mr;
				auto c3 = c1 + mc;
				if (!CanMove(r3, c3))
				{
					continue;
				}
				if ((r3 == r2) && (c3 == c2))
				{//必须移动箱子
					auto r4 = r3 + mr;
					auto c4 = c3 + mc;
					if (!CanMove(r4, c4))
					{
						continue;
					}
					bfs.PushBack(r3, c3, r4, c4, dis + 1);
				}
				else
				{
					bfs.PushFront(r3, c3, r2, c2, dis );
				}
			}
		}
		return -1;
	}
	int m_r, m_c;
};

测试用例


template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<vector<char>> grid;
	
	{
		Solution sln;
		grid = { {'#','#','#','#','#','#'},
			 {'#','T','#','#','#','#'},
			 {'#','.','.','B','.','#'},
			 {'#','.','#','#','.','#'},
			 {'#','.','.','.','S','#'},
			 {'#','#','#','#','#','#'} };
		auto res = sln.minPushBox(grid);
		Assert(3, res);
	}
	{
		Solution sln;
		grid = { {'#','#','#','#','#','#'},
			 {'#','T','.','.','#','#'},
			 {'#','.','#','B','.','#'},
			 {'#','.','.','.','.','#'},
			 {'#','.','.','.','S','#'},
			 {'#','#','#','#','#','#'} };
		auto res = sln.minPushBox(grid);
		Assert(5, res);
	}
}

想法而已,过于复杂:割点、并集查找

状态:箱子所在行列,人所在方位(上右下左) 。
箱子右移的条件:
人能移到箱子左边,箱子能右移(右边没出界,不是墙)
人可能被箱子阻拦:
{ 如果没箱子,人无法到达 无法到达。 e l s e 箱子不是割点 能到达 e l s e 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 能到达。 o t h e r 不能到达。 \begin{cases} 如果没箱子,人无法到达& 无法到达。\\ else 箱子不是割点 & 能到达 \\ else 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 & 能到达。\\ other & 不能到达。\\ \end{cases} 如果没箱子,人无法到达else箱子不是割点else是割点,源点和目标点到时间戳都大于(小于)割点时间戳other无法到达。能到达能到达。不能到达。

写了下代码,太复杂了。
错误原因:源点和目标点到时间戳都大于(小于)割点时间戳则能到达是错误的。因为:割点可能被多次访问,所以需要记录割点所有的时间戳,在同一个时间段的可以访问。但这要修改割点函数。抱着一根筋精神,改进了割点函数。

代码

class CUnionFind
{
public:
	CUnionFind(int iSize) :m_vNodeToRegion(iSize)
	{
		for (int i = 0; i < iSize; i++)
		{
			m_vNodeToRegion[i] = i;
		}
		m_iConnetRegionCount = iSize;
	}	
	CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size())
	{
		for (int i = 0; i < vNeiBo.size(); i++) {
			for (const auto& n : vNeiBo[i]) {
				Union(i, n);
			}
		}
	}
	int GetConnectRegionIndex(int iNode)
	{
		int& iConnectNO = m_vNodeToRegion[iNode];
		if (iNode == iConnectNO)
		{
			return iNode;
		}
		return iConnectNO = GetConnectRegionIndex(iConnectNO);
	}
	void Union(int iNode1, int iNode2)
	{
		const int iConnectNO1 = GetConnectRegionIndex(iNode1);
		const int iConnectNO2 = GetConnectRegionIndex(iNode2);
		if (iConnectNO1 == iConnectNO2)
		{
			return;
		}
		m_iConnetRegionCount--;
		if (iConnectNO1 > iConnectNO2)
		{
			UnionConnect(iConnectNO1, iConnectNO2);
		}
		else
		{
			UnionConnect(iConnectNO2, iConnectNO1);
		}
	}

	bool IsConnect(int iNode1, int iNode2)
	{
		return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
	}
	int GetConnetRegionCount()const
	{
		return m_iConnetRegionCount;
	}
	vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
	{
		const int iNodeSize = m_vNodeToRegion.size();
		vector<int> vRet(iNodeSize);
		for (int i = 0; i < iNodeSize; i++)
		{
			vRet[GetConnectRegionIndex(i)]++;
		}
		return vRet;
	}
	std::unordered_map<int, vector<int>> GetNodeOfRegion()
	{
		std::unordered_map<int, vector<int>> ret;
		const int iNodeSize = m_vNodeToRegion.size();
		for (int i = 0; i < iNodeSize; i++)
		{
			ret[GetConnectRegionIndex(i)].emplace_back(i);
		}
		return ret;
	}
private:
	void UnionConnect(int iFrom, int iTo)
	{
		m_vNodeToRegion[iFrom] = iTo;
	}
	vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
	int m_iConnetRegionCount;
};

class CUnionFindMST
{
public:
	CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize)
	{

	}
	void AddEdge(const int iNode1, const int iNode2, int iWeight)
	{
		if (m_uf.IsConnect(iNode1, iNode2))
		{
			return;
		}
		m_iMST += iWeight;
		m_uf.Union(iNode1, iNode2);
	}
	void AddEdge(const vector<int>& v)
	{
		AddEdge(v[0], v[1], v[2]);
	}
	int MST()
	{
		if (m_uf.GetConnetRegionCount() > 1)
		{
			return -1;
		}
		return m_iMST;
	}
private:
	int m_iMST = 0;
	CUnionFind m_uf;
};

class CUnionFindDirect
{
public:
	CUnionFindDirect(int iSize)
	{
		m_vRoot.resize(iSize);
		iota(m_vRoot.begin(), m_vRoot.end(), 0);
	}
	void Connect(bool& bConflic, bool& bCyc, int iFrom, int iTo)
	{
		bConflic = bCyc = false;
		if (iFrom != m_vRoot[iFrom])
		{
			bConflic = true;
		}

		Fresh(iTo);
		if (m_vRoot[iTo] == iFrom)
		{
			bCyc = true;
		}
		if (bConflic || bCyc)
		{
			return;
		}

		m_vRoot[iFrom] = m_vRoot[iTo];
	}
	int GetMaxDest(int iFrom)
	{
		Fresh(iFrom);
		return m_vRoot[iFrom];
	}	
private:
	int Fresh(int iNode)
	{
		if (m_vRoot[iNode] == iNode)
		{
			return iNode;
		}
		return m_vRoot[iNode] = Fresh(m_vRoot[iNode]);
	}
	vector<int> m_vRoot;
};

class CNearestMST
{
public:
	CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)
	{

	}
	void Init(const vector<vector<int>>& edges)
	{
		for (const auto& v : edges)
		{
			Add(v);
		}
	}
	void Add(const vector<int>& v)
	{
		m_vNeiTable[v[0]].emplace_back(v[1], v[2]);
		m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
	}
	int MST(int start)
	{
		int next = start;
		while ((next = AddNode(next)) >= 0);
		return m_iMST;
	}
	int MST(int iNode1, int iNode2, int iWeight)
	{
		m_bDo[iNode1] = true;
		for (const auto& it : m_vNeiTable[iNode1])
		{
			if (m_bDo[it.first])
			{
				continue;
			}
			m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
		}
		m_iMST = iWeight;

		int next = iNode2;
		while ((next = AddNode(next)) >= 0);
		return m_iMST;
	}

private:
	int AddNode(int iCur)
	{
		m_bDo[iCur] = true;
		for (const auto& it : m_vNeiTable[iCur])
		{
			if (m_bDo[it.first])
			{
				continue;
			}
			m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
		}

		int iMinIndex = -1;
		for (int i = 0; i < m_vDis.size(); i++)
		{
			if (m_bDo[i])
			{
				continue;
			}
			if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex]))
			{
				iMinIndex = i;
			}
		}
		if (-1 != iMinIndex)
		{
			if (INT_MAX == m_vDis[iMinIndex])
			{
				m_iMST = -1;
				return -1;
			}
			m_iMST += m_vDis[iMinIndex];
		}

		return iMinIndex;
	}
	vector<bool> m_bDo;
	vector<long long> m_vDis;
	vector < vector<std::pair<int, int>>> m_vNeiTable;
	long long m_iMST = 0;
};

class CBFSDis
{
public:
	CBFSDis(vector<vector<int>>& vNeiB, vector<int> start)
	{
		m_vDis.assign(vNeiB.size(), m_iNotMayDis);
		queue<int> que;
		for (const auto& n : start)
		{
			m_vDis[n] = 0;
			que.emplace(n);
		}
		while (que.size())
		{
			const int cur = que.front();
			que.pop();
			for (const auto next : vNeiB[cur])
			{
				if (m_iNotMayDis != m_vDis[next])
				{
					continue;
				}
				m_vDis[next] = m_vDis[cur] + 1;
				que.emplace(next);
			}
		}
	}
public:
	const int m_iNotMayDis = 1e9;
	vector<int> m_vDis;
};

class C01BFSDis
{
public:
	C01BFSDis(vector<vector<int>>& vNeiB0, vector<vector<int>>& vNeiB1, int s)
	{
		m_vDis.assign(vNeiB0.size(), -1);
		std::deque<std::pair<int, int>> que;
		que.emplace_back(s, 0);
		while (que.size())
		{
			auto it = que.front();
			const int cur = it.first;
			const int dis = it.second;
			que.pop_front();
			if (-1 != m_vDis[cur])
			{
				continue;
			}
			m_vDis[cur] = it.second;
			for (const auto next : vNeiB0[cur])
			{
				if (-1 != m_vDis[next])
				{
					continue;
				}
				que.emplace_front(next, dis);

			}

			for (const auto next : vNeiB1[cur])
			{
				if (-1 != m_vDis[next])
				{
					continue;
				}
				que.emplace_back(next, dis + 1);
			}
		}
	}
public:
	vector<int> m_vDis;
};
//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class  CHeapDis
{
public:
	CHeapDis(int n)
	{
		m_vDis.assign(n, -1);
	}
	void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
	{
		std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;
		minHeap.emplace(0, start);
		while (minHeap.size())
		{
			const long long llDist = minHeap.top().first;
			const int iCur = minHeap.top().second;
			minHeap.pop();
			if (-1 != m_vDis[iCur])
			{
				continue;
			}
			m_vDis[iCur] = llDist;
			for (const auto& it : vNeiB[iCur])
			{
				minHeap.emplace(llDist + it.second, it.first);
			}
		}
	}
	vector<long long> m_vDis;
};


//朴素迪杰斯特拉算法
class CN2Dis
{
public:
	CN2Dis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre)
	{

	}
	void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
	{
		m_vDis.assign(m_iSize, -1);
		m_vPre.assign(m_iSize, -1);
		vector<bool> vDo(m_iSize);//点是否已处理
		auto AddNode = [&](int iNode)
		{
			//const int iPreNode = m_vPre[iNode];
			long long llPreDis = m_vDis[iNode];

			vDo[iNode] = true;
			for (const auto& it : vNeiB[iNode])
			{
				if (vDo[it.first])
				{
					continue;
				}

				if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first]))
				{
					m_vDis[it.first] = it.second + llPreDis;
					m_vPre[it.first] = iNode;
				}
			}

			long long llMinDis = LLONG_MAX;
			int iMinIndex = -1;
			for (int i = 0; i < m_vDis.size(); i++)
			{
				if (vDo[i])
				{
					continue;
				}
				if (-1 == m_vDis[i])
				{
					continue;
				}
				if (m_vDis[i] < llMinDis)
				{
					iMinIndex = i;
					llMinDis = m_vDis[i];
				}
			}
			return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;
		};

		int next = start;
		m_vDis[start] = 0;
		while (-1 != (next = AddNode(next)));
	}
	void Cal(int start, const vector<vector<int>>& mat)
	{
		m_vDis.assign(m_iSize, LLONG_MAX);
		m_vPre.assign(m_iSize, -1);
		vector<bool> vDo(m_iSize);//点是否已处理
		auto AddNode = [&](int iNode)
		{
			long long llPreDis = m_vDis[iNode];
			vDo[iNode] = true;
			for (int i = 0; i < m_iSize; i++)
			{
				if (vDo[i])
				{
					continue;
				}
				const long long llCurDis = mat[iNode][i];
				if (llCurDis <= 0)
				{
					continue;
				}
				m_vDis[i] = min(m_vDis[i], m_vDis[iNode] + llCurDis);
			}
			long long llMinDis = LLONG_MAX;
			int iMinIndex = -1;
			for (int i = 0; i < m_iSize; i++)
			{
				if (vDo[i])
				{
					continue;
				}
				if (m_vDis[i] < llMinDis)
				{
					iMinIndex = i;
					llMinDis = m_vDis[i];
				}
			}
			if (LLONG_MAX == llMinDis)
			{
				return -1;
			}

			m_vPre[iMinIndex] = iNode;
			return iMinIndex;
		};

		int next = start;
		m_vDis[start] = 0;
		while (-1 != (next = AddNode(next)));
	}
	const vector<long long>& DIS;
	const vector<int>& PRE;
private:
	const int m_iSize;
	vector<long long> m_vDis;//各点到起点的最短距离
	vector<int>  m_vPre;//最短路径的前一点
};

//多源码路径
template<class T, T INF = 1000 * 1000 * 1000>
class CFloyd
{
public:
	CFloyd(const  vector<vector<T>>& mat)
	{
		m_vMat = mat;
		const int n = mat.size();
		for (int i = 0; i < n; i++)
		{//通过i中转
			for (int i1 = 0; i1 < n; i1++)
			{
				for (int i2 = 0; i2 < n; i2++)
				{
					//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离
					m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);
					//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离
				}
			}
		}
	};
	vector<vector<T>> m_vMat;
};

class CParentToNeiBo
{
public:
	CParentToNeiBo(const vector<int>& parents)
	{
		m_vNeiBo.resize(parents.size());
		for (int i = 0; i < parents.size(); i++)
		{
			if (-1 == parents[i])
			{
				m_root = i;
			}
			else
			{
				m_vNeiBo[parents[i]].emplace_back(i);
			}
		}
	}
	vector<vector<int>> m_vNeiBo;
	int m_root = -1;
};

class CNeiBo2
{
public:
	CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
	}
	CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
		for (const auto& v : edges)
		{
			m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
	}
	inline void Add(int iNode1, int iNode2)
	{
		iNode1 -= m_iBase;
		iNode2 -= m_iBase;
		m_vNeiB[iNode1].emplace_back(iNode2);
		if (!m_bDirect)
		{
			m_vNeiB[iNode2].emplace_back(iNode1);
		}
	}
	const int m_iN;
	const bool m_bDirect;
	const int m_iBase;
	vector<vector<int>> m_vNeiB;
};

class CNeiBo3
{
public:
	CNeiBo3(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		m_vNeiB.resize(n);
		AddEdges(edges, bDirect, iBase);
	}
	CNeiBo3(int n)
	{
		m_vNeiB.resize(n);
	}
	void AddEdges(vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		for (const auto& v : edges)
		{
			m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
			if (!bDirect)
			{
				m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
			}
		}
	}
	vector<vector<std::pair<int, int>>> m_vNeiB;
};


template<class T, T INF = 1000 * 1000 * 1000>
class CNeiBoToMat
{
public:
	CNeiBoToMat(int n, const vector<vector<int>>& edges, bool bDirect = false, bool b1Base = false)
	{
		m_vMat.assign(n, vector<int>(n, INF));
		for (int i = 0; i < n; i++)
		{
			m_vMat[i][i] = 0;
		}
		for (const auto& v : edges)
		{
			m_vMat[v[0] - b1Base][v[1] - b1Base] = v[2];
			if (!bDirect)
			{
				m_vMat[v[1] - b1Base][v[0] - b1Base] = v[2];
			}
		}
	}
	vector<vector<int>> m_vMat;
};
class CCutEdge
{
public:
	CCutEdge(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vTime.assign(m_iSize, -1);
		m_vCutEdges.resize(m_iSize);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 != m_vTime[i])
			{
				continue;
			}
			m_iRegionCount++;
			dfs(i, -1, vNeiB);
		}
	}
	bool IsCut(int node1, int node2)
	{
		return m_vCutEdges[node1].count(node2);
	}
	bool IsCut(int node)
	{
		return m_vCutEdges[node].size();
	}
	int RegionCount()const
	{
		return m_iRegionCount;
	}
protected:
	int dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
	{
		auto& curTime = m_vTime[cur];
		curTime = m_iTime++;
		int iRet = curTime;
		for (const auto& next : vNeiB[cur])
		{
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vTime[next])
			{
				iRet = min(iRet, m_vTime[next]);
				continue;
			}
			int iNextTime = dfs(next, cur, vNeiB);
			if (iNextTime > curTime)
			{
				m_vCutEdges[cur].emplace(next);
			}
			iRet = min(iRet, iNextTime);
		}
		return iRet;
	}
	vector<int> m_vTime;
	int m_iTime = 0;
	int m_iRegionCount = 0;
	vector<std::unordered_set<int>> m_vCutEdges;
	const int m_iSize;
};

//割点
class CCutPoint
{
public:
	CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vTime.assign(m_iSize, -1);
		m_vVisitMin.assign(m_iSize, -1);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 != m_vTime[i])
			{
				continue;
			}
			m_iRegionCount++;
			dfs(i, -1, vNeiB);
		}
	}
	int RegionCount()const
	{
		return m_iRegionCount;
	}
	const vector<int>& CutPoints()const
	{
		return m_vCutPoints;
	}
	const vector<int>& Tinme()const { return m_vTime; }
protected:
	void dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
	{
		auto& curTime = m_vTime[cur];
		auto& visitMin = m_vVisitMin[cur];
		curTime = m_iTime++;
		visitMin = curTime;
		int iMax = -1;
		int iChildNum = 0;
		for (const auto& next : vNeiB[cur])
		{
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vTime[next])
			{
				visitMin = min(visitMin, m_vTime[next]);
				continue;
			}
			iChildNum++;
			dfs(next, cur, vNeiB);
			visitMin = min(visitMin, m_vVisitMin[next]);
			iMax = max(iMax, m_vVisitMin[next]);
		}
		if (-1 == parent)
		{
			if (iChildNum >= 2)
			{
				m_vCutPoints.emplace_back(cur);
			}
		}
		else
		{
			if (iMax >= curTime)
			{
				m_vCutPoints.emplace_back(cur);
			}
		}
	}
	vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理
	vector<int> m_vVisitMin;// 
	int m_iTime = 0;
	int m_iRegionCount = 0;
	vector<int> m_vCutPoints;
	const int m_iSize;
};

class CTopSort
{
public:
	//vBackNeiBo[1] = {2} 表示 1完成后,才能完成2
	template<class T >
	void Init(vector<T>& vPreToNext)
	{
		m_c = vPreToNext.size();
		vector<int> vInDeg(m_c);
		for (int cur = 0; cur < m_c; cur++)
		{
			for (const auto& next : vPreToNext[cur])
			{
				vInDeg[next]++;
			}
		}
		queue<int> que;
		for (int i = 0; i < m_c; i++)
		{
			if (0 == vInDeg[i])
			{
				que.emplace(i);
				m_vLeaf.emplace_back(i);
				OnDo(-1, i);
			}
		}

		while (que.size())
		{
			const int cur = que.front();
			que.pop();
			for (const auto& next : vPreToNext[cur])
			{
				vInDeg[next]--;
				if (0 == vInDeg[next])
				{
					que.emplace(next);
					OnDo(cur, next);
				}
			}
		};
	}
	virtual void OnDo(int pre, int cur) = 0;
	int m_c;
	vector<int> m_vLeaf;
};


struct CVec
{
	int r;
	int c;
};
struct CPos
{	
	int r = 0, c = 0;
	int ToMask()const { return s_MaxC * r + c; };
	bool operator==(const CPos& o)const
	{
		return (r == o.r) && (c == o.c);
	}
	CPos operator+(const CVec& v)const
	{
		return { r + v.r, c + v.c };
	}
	CPos operator-(const CVec& v)const
	{
		return{ r - v.r, c - v.c };
	}
	CVec operator-(const CPos& o)const
	{
		return {r - o.r,c- o.c};
	}
	inline static  int s_MaxC = 10'000;
};

class CRange
{
public:
	CRange(int rCount, int cCount, std::function<bool(int, int)> funVilidCur):m_r(rCount),m_c(cCount), m_funVilidCur(funVilidCur)
	{

	}
	bool Vilid(CPos pos)const
	{
		return (pos.r >= 0) && (pos.r < m_r) && (pos.c >= 0) && (pos.c < m_c) && m_funVilidCur(pos.r, pos.c);
	}
	const int m_r, m_c;
protected:
	std::function<bool(int, int)> m_funVilidCur;
};
class  CGridToNeiBo
{
public:
	static vector<vector<int>> ToNeiBo(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
	{
		vector<vector<int>> vNeiBo(rCount * cCount);
		auto Move = [&](int preR, int preC, int r, int c)
		{
			if ((r < 0) || (r >= rCount))
			{
				return;
			}
			if ((c < 0) || (c >= cCount))

			{
				return;
			}
			if (funVilidCur(preR, preC) && funVilidNext(r, c))
			{
				vNeiBo[cCount*preR+preC].emplace_back(r*cCount+ c);
			}
		};

		for (int r = 0; r < rCount; r++)
		{
			for (int c = 0; c < cCount; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
		return vNeiBo;
	}
};

template<class T = int>
class CEnumGrid
{
public:	
	static  void EnumGrid(vector<vector<T>>& grid, std::function<void(int, int, T&)> call)
	{
		for (int r = 0; r < grid.size(); r++)
		{
			for (int c = 0; c < grid.front().size(); c++)
			{
				call(r, c, grid[r][c]);
			}
		}
	}
	static  void EnumPos(vector<vector<T>>& grid, vector<tuple<T, CPos&>> vRes)
	{
		EnumGrid(grid, [&vRes](int curR, int curC, T& curV)
			{
				for (auto& [value, pos] : vRes)
				{
					if (curV == value)
					{
						pos = { curR,curC };
					}
				}
			});
	}
	inline static const CVec s_Move4[4] = { {1,0},{0,1},{-1,0},{0,-1} };//上右下左
	enum {UP=0,RIGHT,DOWN,LEFT};
};

class CEnumGridEdge
{
public:
	CEnumGridEdge(int r, int c, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext) :m_r(r), m_c(c)
	{
		m_funVilidCur = funVilidCur;
		m_funVilidNext = funVilidNext;
		m_vNext.assign(m_r, vector < vector<pair<int, int>>>(m_c));
		Init();
	}
	vector<vector<int>> BFS(vector<pair<int, int>> start, const int endr = -1, const int endc = -1)
	{
		vector<vector<int>> vDis(m_r, vector<int>(m_c, -1));
		queue<pair<int, int>> que;
		for (const auto& [r, c] : start)
		{
			vDis[r][c] = 0;
			que.emplace(make_pair(r, c));
		}
		while (que.size())
		{
			const auto [r, c] = que.front();
			que.pop();
			for (const auto [nr, nc] : m_vNext[r][c])
			{
				if (-1 != vDis[nr][nc])
				{
					continue;
				}
				vDis[nr][nc] = vDis[r][c] + 1;
				if ((endr == nr) && (endc == nc))
				{
					break;
				}
				que.emplace(make_pair(nr, nc));
			}
		}
		return vDis;
	}
	const int m_r, m_c;
	vector < vector < vector<pair<int, int>>>> m_vNext;
protected:
	void Init()
	{
		for (int r = 0; r < m_r; r++)
		{
			for (int c = 0; c < m_c; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
	}
	void Move(int preR, int preC, int r, int c)
	{
		if ((r < 0) || (r >= m_r))
		{
			return;
		}
		if ((c < 0) || (c >= m_c))

		{
			return;
		}
		if (m_funVilidCur(preR, preC) && m_funVilidNext(r, c))
		{
			m_vNext[preR][preC].emplace_back(r, c);
		}
	};
	std::function<bool(int, int)> m_funVilidCur, m_funVilidNext;
};

class CBFS
{
public:
	CBFS(int iStatuCount, int iInit = -1) :m_iStatuCount(iStatuCount), m_iInit(iInit)
	{
		m_res.assign(iStatuCount, iInit);
	}
	bool Peek(int& statu)
	{
		if (m_que.empty())
		{
			return false;
		}
		statu = m_que.front();
		m_que.pop_front();
		return true;
	}
	void PushBack(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_back(statu);
	}
	void PushFront(int statu, int value)
	{
		if (m_iInit != m_res[statu])
		{
			return;
		}
		m_res[statu] = value;
		m_que.push_front(statu);
	}
	int Get(int statu)
	{
		return m_res[statu];
	}
private:
	const int m_iStatuCount;
	const int m_iInit;
	deque<int> m_que;
	vector<int> m_res;
};

class CBFS2 : protected CBFS
{
public:
	CBFS2(int iStatuCount1, int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit), m_iStatuCount2(iStatuCount2)
	{

	}
	bool Peek(int& statu1, int& statu2)
	{
		int statu;
		if (!CBFS::Peek(statu))
		{
			return false;
		}
		statu1 = statu / m_iStatuCount2;
		statu2 = statu % m_iStatuCount2;
		return true;
	}
	void PushBack(int statu1, int statu2, int value)
	{
		CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);
	}
	void PushFront(int statu1, int statu2, int value)
	{
		CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);
	}
	int Get(int statu1, int statu2)
	{
		return CBFS::Get(statu1 * m_iStatuCount2 + statu2);
	}
private:
	const int m_iStatuCount2;
};

class CBFS3 : protected CBFS2
{
public:
	CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3)
	{

	}
	bool Peek(int& statu1, int& statu2, int& statu3)
	{
		int statu23;
		if (!CBFS2::Peek(statu1, statu23))
		{
			return false;
		}
		statu2 = statu23 / m_iStatuCount3;
		statu3 = statu23 % m_iStatuCount3;
		return true;
	}
	void PushBack(int statu1, int statu2, int statu3, int value)
	{
		CBFS2::PushBack(statu1, statu2 * m_iStatuCount3 + statu3, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int value)
	{
		CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);
	}
	int Get(int statu1, int statu2, int statu3)
	{
		return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);
	}
	const int m_iStatuCount3;
};

class CBFS4 : protected CBFS3
{
public:
	CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4)
	{

	}
	bool Peek(int& statu1, int& statu2, int& statu3, int& statu4)
	{
		int statu34;
		if (!CBFS3::Peek(statu1, statu2, statu34))
		{
			return false;
		}
		statu3 = statu34 / m_iStatuCount4;
		statu4 = statu34 % m_iStatuCount4;
		return true;
	}
	void PushBack(int statu1, int statu2, int statu3, int statu4, int value)
	{
		CBFS3::PushBack(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
	}
	void PushFront(int statu1, int statu2, int statu3, int statu4, int value)
	{
		CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
	}
	int Get(int statu1, int statu2, int statu3, int statu4)
	{
		return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);
	}
	const int m_iStatuCount4;
};


class CCutPointEx
{
public:
	CCutPointEx(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vTime.assign(m_iSize, -1);	
		m_vCutRegion.resize(m_iSize);
		m_vNodeToRegion.assign(m_iSize,-1);
		m_vCut.assign(m_iSize, false);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 != m_vTime[i])
			{
				continue;
			}
			dfs(i, -1, vNeiB);
			m_iRegionCount++;
		}
	}
	bool Visit(int src, int dest, int iCut)
	{
		if (m_vNodeToRegion[src] != m_vNodeToRegion[dest])
		{
			return false;//不在一个连通区域
		}
		if (!m_vCut[iCut])
		{
			return true;
		}
		const int r1 = GetCutRegion(iCut,src);
		const int r2 = GetCutRegion(iCut, dest);
		return r1 == r2;
	}
protected:
	int dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
	{		
		auto& curTime = m_vTime[cur];			
		m_vNodeToRegion[cur] = m_iRegionCount;
		curTime = m_iTime++;		
		int iCutChild=0;
		int iMinTime = curTime;
		for (const auto& next : vNeiB[cur])
		{
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vTime[next])
			{
				iMinTime = min(iMinTime, m_vTime[next]);
				continue;
			}			
			int iChildBeginTime = m_iTime;
			const int iChildMinTime = dfs(next, cur, vNeiB);
			iMinTime = min(iMinTime, iChildMinTime);
			if (iChildMinTime >= curTime)
			{
				iCutChild++;
				m_vCutRegion[cur].push_back({ iChildBeginTime,m_iTime });
			};
		}
		m_vCut[cur] = (iCutChild + (-1 != parent)) >= 2;
		return iMinTime;
	}	
	int GetCutRegion(int iCut, int iNode)const 
	{
		const auto& v = m_vCutRegion[iCut];
		auto it = std::upper_bound(v.begin(), v.end(), m_vTime[iNode],[](int time, const std::pair<int, int>& pr) {return time < pr.first; });
		if (v.begin() == it)
		{
			return v.size();
		}
		--it;
		return (it->second > m_vTime[iNode]) ? (it - v.begin()) : v.size();
	}
	int m_iTime = 0;	
	const int m_iSize;
	int m_iRegionCount=0;
	vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理
	vector<bool> m_vCut;
	vector<int> m_vNodeToRegion;
	vector<vector<pair<int,int>>> m_vCutRegion;
};

class Solution {
public:
	int minPushBox(vector<vector<char>>& grid) {		
		auto Vilid = [&](int r, int c) {return '#' != grid[r][c]; };
		CRange range(grid.size(), grid.front().size(), Vilid);	
		CPos::s_MaxC = range.m_c;		
		auto neiBo = CGridToNeiBo::ToNeiBo(range.m_r, range.m_c, Vilid, Vilid);		
		CCutPointEx cutPoint(neiBo);
		auto Visit = [&](CPos s, CPos d, CPos b){			
			return range.Vilid(d) && cutPoint.Visit(s.ToMask(),d.ToMask(),b.ToMask());
		};
		CBFS3 bfs(range.m_r, range.m_c, 4);
		CPos sInit,tInit,bInit;
		CEnumGrid<char>::EnumPos(grid, { { 'B',bInit },{'T',tInit},{'S',sInit} });
		auto MovePeo = [&](CPos peo, CPos bCur, int iCurDis)		{
			for (int i = 0; i < 4; i++) {
				if (Visit(peo, bCur + CEnumGrid<>::s_Move4[i], bCur)) {
					bfs.PushFront(bCur.r, bCur.c, i, iCurDis);
				}
			}
		};
		MovePeo(sInit, bInit, 0);
		int br1, bc1, pd;
		while (bfs.Peek(br1, bc1, pd))		{
			CPos bCur = { br1,bc1 };
			CPos peo = bCur + CEnumGrid<>::s_Move4[pd];
			const int CurDis = bfs.Get(br1, bc1, pd);
			if (bCur == tInit )			{
				return CurDis;	}	
			MovePeo(peo, bCur, CurDis);
			auto dest = bCur - CEnumGrid<>::s_Move4[pd];
			if (range.Vilid(dest)){
				bfs.PushBack(dest.r, dest.c, pd, CurDis + 1);
			}
		}			
		return -1;
	}
};

2023年4月

class CGridCanVisit
{
public:
CGridCanVisit(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())
{
m_vDis.assign(m_r, vector(m_c,INT_MAX/2));
Dist(r, c);
}
bool Vilid(const int r,const int c )
{
if ((r < 0) || (r >= m_r))
{
return false;
}
if ((c < 0) || (c >= m_c))
{
return false;
}
return true;
}
const vector<vector>& Dis()const
{
return m_vDis;
}
const vector<vector>& m_bCanVisit;
private:
//INT_MAX/2 表示无法到达
void Dist(int r, int c)
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
vector<vector> vHasDo(m_r, vector(m_c));
std::queue<std::pair<int, int>> que;
auto Add = [&](const int& r, const int& c, const int& iDis)
{
if (!Vilid(r, c))
{
return;
}
if (vHasDo[r][c])
{
return;
}
if (!m_bCanVisit[r][c])
{
vHasDo[r][c] = true;
return;
}
if (iDis >= m_vDis[r][c])
{
return;
}
que.emplace(r, c);
m_vDis[r][c] = iDis;
vHasDo[r][c] = true;
};
Add(r, c, 0);
while (que.size())
{
const int r = que.front().first;
const int c = que.front().second;
que.pop();
const int iDis = m_vDis[r][c];
Add(r + 1, c, iDis + 1);
Add(r - 1, c, iDis + 1);
Add(r, c + 1, iDis + 1);
Add(r, c - 1, iDis + 1);
}
}
vector<vector> m_vDis;
const int m_r;
const int m_c;
};
class Solution {
public:
int minPushBox(vector<vector>& grid) {
std::pair<int, int> pB, pS, pT;
m_r = grid.size();
m_c = grid[0].size();
vector<vector> vCanVisit(m_r, vector(m_c));
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
const char ch = grid[r][c];
if (‘S’ == ch)
{
pS = std::make_pair(r, c);
}
else if (‘T’ == ch)
{
pT = std::make_pair(r, c);
}
else if (‘B’ == ch)
{
pB = std::make_pair(r, c);
}
vCanVisit[r][c] = ‘#’ != ch;
}
}
std::unordered_set vHasDo;
std::queue<std::tuple<int, int, int, int>> que;
auto Add = [&](int r, int c, int iSR, int iSC)
{
const int iMask = r * 100 * 100 * 100 + c * 100 * 100 + iSR * 100 + iSC;
if (vHasDo.count(iMask))
{
return;
}
vHasDo.insert(iMask);
que.emplace(r, c, iSR, iSC);
};
auto Move = [&]( CGridCanVisit& gc,int r, int c, int iOldR, int iOldC, int iSR, int iSC)
{
if (!gc.Vilid(r, c))
{
return;//非法行列好
}
if (!gc.m_bCanVisit[r][c])
{//rc是墙无法推动
return;
}
auto vDis = gc.Dis();
const int r2 = iOldR * 2 - r;
const int c2 = iOldC * 2 - c;
if (!gc.Vilid(r2, c2))
{
return;
}
if (vDis[r2][c2] >= 1000 * 1000)
{
return;//人没有地方占,无法推
}
Add(r, c, iOldR, iOldC);
};
std::queue<std::tuple<int, int, int, int>> preQue;
preQue.emplace(pB.first, pB.second, pS.first, pS.second);
for (int i = 0; preQue.size(); i++ )
{
while (preQue.size())
{
auto cur = preQue.front();
if ((get<0>(cur) == pT.first) && (get<1>(cur) == pT.second))
{
return i;
}
preQue.pop();
auto tmp = vCanVisit;
tmp[get<0>(cur)][get<1>(cur)] = false;
CGridCanVisit gc(tmp, get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)+1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)-1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)+1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)-1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
}
preQue.swap(que);
}
return -1;
}
int m_r;
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469769.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# 使用onnxruntime部署夜间雾霾图像的可见度增强

目录 介绍 模型信息 效果 项目 代码 下载 C# Onnx 使用onnxruntime部署夜间雾霾图像的可见度增强 介绍 github地址&#xff1a;GitHub - jinyeying/nighttime_dehaze: [ACMMM2023] "Enhancing Visibility in Nighttime Haze Images Using Guided APSF and Gradien…

如何实现负载均衡呢?

如何实现负载均衡呢&#xff1f; 一、问题解析 常见的实现方案有三种&#xff01;  基于 DNS 实现负载均衡  基于硬件实现负载均衡  基于软件实现负载均衡 先来说一下基于 DNS 实现负载均衡的方式&#xff0c;它的实现方式比较简单&#xff0c;只需要在 DNS 服务器上…

apidoc接口文档的自动更新与发布

文章目录 一、概述二、环境准备三、接口文档生成1. 下载源码2. 初始化3.执行 四、文档发布五&#xff0c;配置定时运行六&#xff0c;docker运行七&#xff0c;优化方向 一、概述 最近忙于某开源项目的接口文档整理&#xff0c;采用了apidoc来整理生成接口文档。 apidoc是一个…

Java基于SpringBoot的口腔医院管理平台,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

仿12306校招项目业务三(用户注册)

用户表结构 原本的表结构如下 由于用户量大&#xff0c;采用分库分表&#xff1a; 分库分表设计 根据系统设计的假设&#xff0c;12306 的注册用户规模约为 10 亿&#xff0c;每年新增用户约 1000 万。在用户数据分库或分表之前&#xff0c;我们需要先考虑拆分成多少个库或表…

我们和openAi的差距,只差向神祈祷了?

这两天看到了两张挺有意思的图片&#xff0c;关于openAi研究人员和qianWen的研究人员的日常生活作息表。蛮有意思&#xff0c;看到后有很多感想&#xff0c;特地分享出来。&#xff08;声明&#xff1a;对比没有恶意&#xff0c;也没有好坏之分。他们本都是站在金字塔最顶尖的人…

StarRocks——滴滴OLAP的技术实践与发展方向

原文大佬的这篇StarRocks实践文章整体写的很深入&#xff0c;介绍了StarRocks数仓架构设计、物化视图加速实时看板、全局字典精确去重等内容&#xff0c;这里直接摘抄下来用作学习和知识沉淀。 目录 一、背景介绍 1.1 滴滴OLAP的发展历程 1.2 OLAP引擎存在的痛点 1.2.1 运维…

AI人工智能芯片制作研究与开发技术资料(三百多份文档)【机×密】

收藏多年的精品&#xff0c;不可多得的东西。对芯片开发研究有兴趣同学&#xff0c;赶快下载看看吧。文件大小3G多。 AI人工智能芯片制作研究与开发技术资料&#xff08;三百多份文档&#xff09;【机密】 下载地址&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/14Duh…

【网络安全】SQL注入_sql注入攻击实例(网安人必学系列)

1.1 .Sql注入攻击原理 SQL注入漏洞可以说是在企业运营中会遇到的最具破坏性的漏洞之一&#xff0c;它也是目前被利用得最多的漏洞。要学会如何防御SQL注入&#xff0c;首先我们要学习它的原理。 针对SQL注入的攻击行为可描述为通过在用户可控参数中注入SQL语法&#xff0c;破…

容器镜像详解

1. 镜像组成 一个标准的OCI容器镜像由index, manifest, config, image layers这几个部分组成。 以docker镜像为例&#xff0c;下载的镜像文件保存在/var/lib/docker/目录下面 image/overlay2子目录下面保存着镜像相关的一些元数据 在下面的介绍主要以nginx:latest镜像为例子…

Django定时任务之django_apscheduler使用

Django定时任务之django_apscheduler使用 今天在写一个任务需求时需要用到定时任务来做一部分数据处理与优化&#xff0c;于是在了解完现有方法&#xff0c;结合自己需求决定使用django_apscheduler&#xff0c;记录一下过程&#xff0c;有几篇值得参考的文章放在结尾&#xf…

超详细!彻底说明白Redis持久化

本文已收录至Github&#xff0c;推荐阅读 &#x1f449; Java随想录 微信公众号&#xff1a;Java随想录 文章目录 Redis持久化方式RDBfork 函数与写时复制RDB 相关配置 AOFAOF 文件解读AOF 的写入与同步AOF 重写AOF重写的实现AOF 重写面临的问题AOF重写缓存区 AOF相关配置AOF …

【深入了解设计模式】适配器设计模式

适配器设计模式 适配器设计模式是一种结构型设计模式&#xff0c;用于将一个类的接口转换成客户端所期望的另一个接口&#xff0c;从而使得原本由于接口不兼容而不能一起工作的类能够一起工作。适配器模式通常用于以下场景&#xff1a; 现有接口与需求不匹配&#xff1a;当需要…

Escalate_Linux(4)-利用SUDO实现提权

利用SUDO实现提权 利用用户的sudo授权获得root的shell cat /etc/passwd cat /etc/sudoers 命令没有权限 echo "cat /etc/sudoers" >/tmp/ls chmod 755 /tmp/ls export PATH/tmp:$PATH /home/user5/script 想办法更改user1的口令 echo echo "user1:xiao…

【C语言基础】:操作符详解(一)

文章目录 操作符详解1. 操作符的分类2. 二进制和进制转换2.1 什么是二进制、八进制、十进制、十六进制2.1.1 二进制和进制转换2.1.2 二进制转十进制2.2.3 二进制转八进制2.2.4 二进制转十六进制 3. 源码、反码、补码4. 移位操作符4.1 左移操作符4.2 右移操作符 5. 位操作符&…

协议的概念+本质+作用+最终表现形式,网络问题(技术+应用+解决的协议+存在原因),主机的对称性

目录 协议 概念 示例 -- 摩斯密码 本质 作用 网络问题 引入 技术问题 应用问题 主机的对称性 问题对应的协议 问题出现的原因 理解协议(代码层面) 举例 -- 快递单 协议的最终表现形式 协议被双方主机认知的基础 协议 概念 协议是在计算机通信和数据传输中规定通…

Seata Server 服务搭建

概述 Seata 分布式事务需要 Seata Seaver 支持&#xff0c;Seata Server在 架构中扮演着 事务管理器的角色。Seata 服务需要往 Nacos 注册中心注册、以及读取配置文件&#xff0c;因此 Seata 启动前需要部署 Nacos 环境。 安装包下载 下载地址: https://download.csdn.net/dow…

【Redis学习笔记03】Java客户端

1. 初识Jedis Jedis的官网地址&#xff1a;https://github.com/redis/jedis 1.1 快速入门 使用步骤&#xff1a; 注意&#xff1a;如果是云服务器用户使用redis需要先配置防火墙&#xff01; 引入maven依赖 <dependencies><!-- 引入Jedis依赖 --><dependency&g…

CSS 的圆角矩形

CSS 的圆角矩形 通过 border-radius 属性使矩形边框带圆角效果成为圆角矩形 语法&#xff1a;border-radius: length; length 是内切圆的半径&#xff0c;其数值越大, 弧线越明显 border-radius 属性值描述length定义圆角的形状%以百分比定义圆角的形状 生成圆形 让 border-…

英伟达狂飙,上演大象坐火箭

英伟达市值破 2W 亿 这两天全球资本市场最大的事情就是英伟达&#xff08;NVDA&#xff09;公布了财报。 本来市场&#xff08;分析师&#xff09;的预期就高&#xff0c;结果财报公布比预期还要高出不少。 NVDA 直接上演「大象坐火箭」&#xff0c;在财报公布后的第一个交易日…