《Docker 简易速速上手小册》第1章 Docker 基础入门(2024 最新版)

news2024/11/16 1:25:14

在这里插入图片描述

文章目录

  • 1.1 Docker 简介与历史
    • 1.1.1 Docker 基础知识
    • 1.1.2 重点案例:Python Web 应用的 Docker 化
    • 1.1.3 拓展案例 1:使用 Docker 进行 Python 数据分析
    • 1.1.4 拓展案例 2:Docker 中的 Python 机器学习环境
  • 1.2 安装与配置 Docker
    • 1.2.1 重点基础知识
    • 1.2.2 重点案例:使用 Docker 运行 Python 脚本
    • 1.2.3 拓展案例 1:使用 Docker 部署 Flask Web 应用
    • 1.2.4 拓展案例 2:在 Docker 中运行 Python 数据分析环境
  • 1.3 Docker 的基本命令
    • 1.3.1 重点基础知识
    • 1.3.2 重点案例:使用 Docker 运行 Python 脚本
    • 1.3.3 拓展案例 1:Docker 中的 Flask 应用
    • 1.3.4 拓展案例 2:Docker 中的 Jupyter Notebook

1.1 Docker 简介与历史

欢迎来到 Docker 的世界!在这一节中,我们将从 Docker 的基础知识和历史开始,然后通过一些精彩的案例来深入探讨它的实用性和强大功能。让我们一起开启这趟知识之旅吧!

1.1.1 Docker 基础知识

要深入了解 Docker,我们首先需要掌握一些关键概念。Docker 是一个开源的容器化技术,它允许开发者和系统管理员在所谓的容器中打包、分发和运行应用。这些容器是轻量级的、可移植的、自给自足的包,它们包含了运行应用所需的一切:代码、运行时环境、库、环境变量和配置文件。

容器 vs. 虚拟机

容器经常被与虚拟机(VM)相比较。虽然它们都提供资源隔离和分配的功能,但容器更为轻量级。与虚拟机不同的是,容器共享主机系统的内核,不需要运行整个操作系统。这就意味着容器启动得更快,占用的资源更少。

镜像

Docker 镜像是容器的蓝本。它是一个轻量级的、不可变的、可执行的软件包,包含运行应用所需的所有内容——代码、运行时环境、库、环境变量和配置文件。通过 Dockerfile,一个简单的文本文件,可以定义如何构建镜像。

Docker Hub 和仓库

Docker Hub 是 Docker 的公共仓库,用户可以在此上传和下载镜像。除了 Docker Hub,用户还可以在私有仓库存储镜像。仓库可以被视为镜像的集合,它允许用户版本控制和分享。

Dockerfile

Dockerfile 是一个文本文件,包含了一系列的指令和参数,用于定义如何从基础镜像构建新的镜像。通过 Dockerfile,可以自动化创建镜像的过程,确保环境的一致性和可重复性。

Docker Compose

Docker Compose 是一个用于定义和运行多容器 Docker 应用的工具。通过一个 YAML 文件,可以配置应用服务的所有参数。这使得管理容器化应用更加容易,特别是在处理多个相互依赖的容器时。

网络和数据存储

Docker 容器可以通过网络进行通信,并可以使用卷(volume)来持久化和共享数据。Docker 网络功能允许容器之间的相互连接,以及容器与外部世界的通信。通过卷,可以将数据持久化存储在容器外部,确保数据的安全和持续性。

了解这些基本概念后,你就已经准备好进一步探索 Docker 的强大功能和实际应用了。在接下来的章节中,我们将通过实际案例,让你更深入地了解如何使用 Docker 来改善你的开发和运维工作。

1.1.2 重点案例:Python Web 应用的 Docker 化

在这个案例中,我们将创建一个简单的 Python Web 应用,并通过 Docker 容器化技术部署它。这个案例将向你展示如何将现代 Web 开发流程与 Docker 相结合,从而提高开发效率和应用的可移植性。

步骤 1: 创建 Flask 应用

我们的第一步是创建一个基本的 Python Flask 应用。Flask 是一个轻量级的 Web 应用框架,非常适合快速开发和原型设计。以下是我们的简单 Flask 应用代码:

# 文件名:app.py

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
    return 'Hello, Docker!'

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0')

在这个应用中,我们定义了一个根路由 /,当访问这个路由时,它返回“Hello, Docker!”。

步骤 2: 编写 Dockerfile

接下来,我们需要创建一个 Dockerfile 来定义如何在 Docker 容器中运行我们的 Flask 应用。Dockerfile 是构建 Docker 镜像的蓝图,包含了必要的指令和步骤。

# Dockerfile

# 使用官方 Python 运行时作为父镜像
FROM python:3.8-slim

# 设置工作目录
WORKDIR /app

# 将当前目录内容复制到位于 /app 的容器中
COPY . /app

# 安装 Flask
RUN pip install flask

# 使得端口 5000 可供此容器外的环境使用
EXPOSE 5000

# 定义环境变量
ENV NAME World

# 运行 app.py 时启动应用
CMD ["python", "./app.py"]

这个 Dockerfile 从一个 Python 3.8 镜像开始,将我们的应用代码复制到镜像中,并安装 Flask。然后,它将容器的 5000 端口暴露出来,并指定了启动应用时运行的命令。

步骤 3: 构建和运行 Docker 容器

最后一步是构建我们的 Docker 镜像,并在容器中运行它。

首先,我们使用以下命令构建镜像:

docker build -t flask-app .

这个命令会读取 Dockerfile,并构建一个名为 flask-app 的镜像。

接下来,运行这个镜像:

docker run -p 5000:5000 flask-app

这个命令会启动一个新的容器实例,将本地的端口 5000 映射到容器的端口 5000,并在该容器中运行我们的 Flask 应用。

现在,打开浏览器并访问 http://localhost:5000,你应该能看到显示“Hello, Docker!”的页面。

通过这个简单的案例,你可以看到 Docker 如何帮助我们轻松地部署 Web 应用,并保证了在不同环境中的一致性和可移植性。这只是 Docker 众多强大功能中的一个简单示例。随着你对 Docker 的进一步学习,你将能够发现并利用更多高级功能来优化你的开发和部署流程。

1.1.3 拓展案例 1:使用 Docker 进行 Python 数据分析

在这个案例中,我们将通过 Docker 创建一个 Python 数据分析环境。这个环境将包括 Jupyter Notebook,这是一个非常受欢迎的工具,允许你在浏览器中编写和执行 Python 代码,并且能够可视化数据和分析结果。让我们一步一步来完成这个案例。

步骤 1: 创建 Dockerfile

首先,我们需要创建一个 Dockerfile 来定义我们的数据分析环境。这个环境将基于 Python 3,并安装 Jupyter Notebook 以及一些常用的数据分析库,如 Pandas 和 NumPy。

# Dockerfile

# 从 Python 官方镜像开始构建
FROM python:3.8-slim

# 安装 Jupyter Notebook
RUN pip install jupyter

# 安装常用的数据分析库
RUN pip install numpy pandas matplotlib seaborn

# 设置工作目录
WORKDIR /data

# 使得端口 8888 可供此容器外的环境使用
EXPOSE 8888

# 当容器启动时,启动 Jupyter Notebook
CMD ["jupyter", "notebook", "--ip='*'", "--port=8888", "--no-browser", "--allow-root"]

这个 Dockerfile 从 Python 3.8 镜像开始,安装了 Jupyter Notebook 和几个常用的数据分析库。它还将容器的 8888 端口暴露出来,以便访问 Jupyter Notebook。

步骤 2: 构建 Docker 镜像

使用以下命令构建我们的 Docker 镜像:

docker build -t python-data-analysis .

这个命令会根据 Dockerfile 构建一个名为 python-data-analysis 的镜像。

步骤 3: 运行 Docker 容器

接下来,运行这个镜像:

docker run -p 8888:8888 python-data-analysis

这个命令启动了一个容器实例,将本地的 8888 端口映射到了容器的 8888 端口,并在该容器中启动了 Jupyter Notebook。

在容器启动后,你将看到一个 URL,其中包含一个 token。将这个 URL 复制到浏览器中,就可以开始使用 Jupyter Notebook 了。

数据分析示例

在 Jupyter Notebook 中,你可以开始编写 Python 代码进行数据分析。例如,你可以使用以下代码来创建一个简单的数据集,并用 Matplotlib 生成一个图表:

# 导入所需库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 创建一个简单的数据集
data = pd.DataFrame({
    'x': range(10),
    'y': np.random.randn(10)
})

# 绘制图表
plt.plot(data['x'], data['y'])
plt.show()

通过这个案例,你可以看到 Docker 如何帮助我们快速搭建一个完整的数据分析环境,无论你在哪里工作,都能保证环境的一致性和可移植性。使用 Docker,你可以专注于数据分析本身,而不是环境配置的问题。

1.1.4 拓展案例 2:Docker 中的 Python 机器学习环境

在这个案例中,我们将展示如何使用 Docker 搭建一个 Python 机器学习环境。这个环境将包括 Python 的机器学习库,如 scikit-learn 和 TensorFlow,使得机器学习项目的开发和部署更加容易和一致。

步骤 1: 创建 Dockerfile

首先,我们需要创建一个 Dockerfile,以定义我们的机器学习环境。这个环境将基于 Python 3,并安装 scikit-learn 和 TensorFlow 这两个流行的机器学习库。

# Dockerfile

# 从 Python 官方镜像开始构建
FROM python:3.8-slim

# 安装 scikit-learn 和 TensorFlow
RUN pip install scikit-learn tensorflow

# 设置工作目录
WORKDIR /ml

# 运行时,保持容器运行
CMD ["tail", "-f", "/dev/null"]

这个 Dockerfile 从 Python 3.8 镜像开始,安装了 scikit-learn 和 TensorFlow。它还设置了工作目录,并使用 tail 命令来保持容器运行。

步骤 2: 构建 Docker 镜像

使用以下命令来构建我们的 Docker 镜像:

docker build -t python-ml .

这个命令会根据 Dockerfile 构建一个名为 python-ml 的镜像。

步骤 3: 运行 Docker 容器

接下来,运行这个镜像:

docker run -it --name ml-container python-ml

这个命令启动了一个名为 ml-container 的容器实例,并进入交互式模式。

机器学习示例

在这个容器中,你可以开始使用 Python 进行机器学习实验。例如,你可以使用以下代码来训练一个简单的线性模型:

# 导入所需库
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_boston
import pandas as pd

# 加载数据集
boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = pd.DataFrame(boston.target, columns=["MEDV"])

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建并训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 测试模型
score = model.score(X_test, y_test)
print(f"Model Accuracy: {score}")

通过这个案例,你可以看到 Docker 如何帮助我们快速搭建一个包含必要机器学习库的环境,使得在不同环境中的机器学习开发和部署变得更加容易和一致。使用 Docker,你可以专注于机器学习模型的构建和训练,而无需担心环境配置问题。

通过以上案例,你不仅能够理解 Docker 的基本概念和历史背景,还能深入学习如何在实际工作中应用 Docker 来提升 Python 开发和数据科学项目的效率和一致性。这些案例旨在提供实用性强且贴近实际生产的应用场景,帮助你更好地理解和运用 Docker 技术。

1.2 安装与配置 Docker

在这一节中,我们将详细讲解 Docker 的安装和配置过程,重点关注在不同操作系统上的安装步骤。随后,我们将通过一些实用的 Python 应用案例,展示如何在 Docker 环境中运行和管理 Python 应用。

1.2.1 重点基础知识

在深入探讨如何使用 Docker 运行 Python 应用之前,了解 Docker 的基本安装和配置步骤是非常重要的。以下是一些关键的基础知识点:

  1. 下载 Docker:

    • WindowsMacOS: 对于 Windows 和 MacOS 用户,推荐使用 Docker Desktop。它提供一个直观的用户界面,并包含了 Docker Engine、Docker CLI 客户端、Docker Compose 等工具。您可以从 Docker 的官方网站下载对应的安装程序。
    • Linux: Linux 用户需要通过命令行安装 Docker。不同的 Linux 发行版(如 Ubuntu、Fedora、Debian)有着不同的安装命令。例如,在 Ubuntu 上,你可以使用 sudo apt-get install docker.io 来安装 Docker。
  2. 安装 Docker:

    • 在 Windows 或 MacOS 上,双击下载的安装包并遵循安装向导的指示完成安装。
    • 在 Linux 上,通常需要使用特定的包管理器进行安装,并可能需要配置 Docker 以便非 root 用户也能运行 Docker 命令。
  3. 启动 Docker:

    • 在 Windows 或 MacOS 上,安装完成后,Docker 将作为一个应用程序出现。你只需点击它来启动 Docker。
    • 在 Linux 上,你可能需要使用命令 sudo systemctl start docker 来启动 Docker 服务。
  4. 验证 Docker 安装:

    • 无论在哪个平台上,都可以通过在终端或命令行中运行 docker --version 来检查 Docker 是否安装成功。这将显示 Docker 的版本信息。
  5. 运行 Docker 的 Hello World:

    • 为了验证 Docker 是否被正确安装和配置,可以运行 Docker 的 Hello World 示例。在命令行中输入 docker run hello-world。这将从 Docker Hub 下载一个测试镜像,并在一个容器中运行它。如果一切顺利,你将在终端中看到一条欢迎消息。
  6. Docker 用户组:

    • 在 Linux 上,建议将用户添加到 Docker 用户组中。这允许非 root 用户执行 Docker 命令。可以通过 sudo usermod -aG docker $USER 命令来实现。
  7. 配置 Docker:

    • Docker 提供了多种配置选项,包括网络设置、存储选项等。这些配置可以通过修改 /etc/docker/daemon.json 文件(在 Linux 上)或通过 Docker Desktop 应用程序(在 Windows 和 MacOS 上)进行。

通过掌握这些基础知识,您将为使用 Docker 创建和运行容器应用打下坚实的基础。接下来的案例将指导您如何在这个设置中运行 Python 应用,无论是简单的脚本还是复杂的 Web 应用。

1.2.2 重点案例:使用 Docker 运行 Python 脚本

在这个案例中,我们将演示如何使用 Docker 来运行一个简单的 Python 脚本。这将帮助你理解如何在 Docker 容器中运行 Python 程序,从而为更复杂的项目打下基础。

步骤 1: 创建 Python 脚本

首先,我们需要创建一个 Python 脚本。让我们编写一个简单的脚本,它会输出一条欢迎信息。在你的工作目录中,创建一个名为 hello.py 的文件,并添加以下内容:

# hello.py
print("Hello from Docker!")

这个脚本非常简单,只是打印出一条消息。

步骤 2: 编写 Dockerfile

接下来,我们需要创建一个 Dockerfile 来定义如何在 Docker 容器中运行这个脚本。Dockerfile 是一个文本文件,包含了一系列的指令,用于告诉 Docker 如何构建镜像。

在你的工作目录中,创建一个名为 Dockerfile 的文件(无文件扩展名),并添加以下内容:

# 使用官方 Python 运行时作为父镜像
FROM python:3.8

# 将工作目录设置为 /app
WORKDIR /app

# 将当前目录中的文件复制到容器的 /app 目录
COPY . /app

# 运行 hello.py 脚本时,调用 Python 解释器
CMD ["python", "./hello.py"]

这个 Dockerfile 从一个 Python 3.8 镜像开始,将工作目录设置为 /app,将当前目录下的文件复制到这个位置,然后定义了运行容器时要执行的命令。

步骤 3: 构建 Docker 镜像

现在,我们可以使用以下命令来构建我们的 Docker 镜像:

docker build -t hello-python .

这条命令告诉 Docker 构建一个新的镜像,并将这个镜像标记(tag)为 hello-python. 指的是当前目录,Docker 会在这里查找 Dockerfile。

步骤 4: 运行 Docker 容器

一旦镜像构建完成,我们就可以运行一个基于该镜像的容器了:

docker run hello-python

当这个命令执行时,它会启动一个新的容器实例,容器会运行 hello.py 脚本,并显示输出。你应该会在命令行中看到 “Hello from Docker!” 的消息。

通过这个简单的案例,你已经学会了如何将 Python 脚本容器化,并在 Docker 中运行它。这是理解 Docker 容器如何工作的基础,并且是向更复杂的应用迈进的第一步。

1.2.3 拓展案例 1:使用 Docker 部署 Flask Web 应用

在这个案例中,我们将演示如何使用 Docker 来部署一个简单的 Flask Web 应用。Flask 是一个轻量级的 Python Web 框架,非常适合快速开发。通过 Docker 化 Flask 应用,你可以确保你的 Web 应用在任何环境中都能以相同的方式运行。

步骤 1: 创建 Flask 应用

首先,我们创建一个基本的 Flask 应用。在你的工作目录中,创建两个文件:app.pyrequirements.txt

  • app.py - Flask 应用的主要文件:

    # app.py
    from flask import Flask
    
    app = Flask(__name__)
    
    @app.route('/')
    def hello():
        return 'Hello, Docker!'
    
    if __name__ == '__main__':
        app.run(debug=True, host='0.0.0.0')
    
  • requirements.txt - 列出所需的 Python 包:

    flask
    

步骤 2: 编写 Dockerfile

接下来,我们需要创建一个 Dockerfile 来定义如何在 Docker 容器中运行我们的 Flask 应用。

在你的工作目录中,创建一个名为 Dockerfile 的文件,并添加以下内容:

# 使用官方 Python 镜像
FROM python:3.8

# 将工作目录设置为 /app
WORKDIR /app

# 将当前目录中的文件复制到容器的 /app 目录
COPY . /app

# 安装 requirements.txt 中的所有依赖
RUN pip install --no-cache-dir -r requirements.txt

# 让世界可以访问你的应用
EXPOSE 5000

# 定义环境变量
ENV FLASK_APP=app.py

# 运行 Flask 应用
CMD ["flask", "run", "--host=0.0.0.0"]

这个 Dockerfile 从 Python 3.8 镜像开始,设置工作目录,复制文件,并安装依赖。它还将容器的 5000 端口暴露出来,并定义了运行 Flask 应用的命令。

步骤 3: 构建 Docker 镜像

使用以下命令来构建我们的 Flask 应用的 Docker 镜像:

docker build -t flask-app .

这条命令会创建一个名为 flask-app 的镜像。

步骤 4: 运行 Docker 容器

构建完镜像后,使用以下命令运行容器:

docker run -p 5000:5000 flask-app

这个命令启动了一个容器实例,将你的机器的 5000 端口映射到容器的 5000 端口。

现在,你的 Flask 应用应该在 Docker 容器中运行了。在浏览器中访问 http://localhost:5000,你应该能看到 “Hello, Docker!” 的消息。

通过这个案例,你已经成功地使用 Docker 部署了一个 Flask Web 应用。这个案例演示了 Docker 如何帮助你保证应用在不同环境中的一致性,同时也展示了 Docker 在现代 Web 开发中的应用。

1.2.4 拓展案例 2:在 Docker 中运行 Python 数据分析环境

在这个案例中,我们将通过 Docker 创建一个 Python 数据分析环境。这个环境将包括 Jupyter Notebook 和常用的数据分析库,如 Pandas、NumPy 和 Matplotlib。这种方法非常适合数据科学家和分析师,因为它提供了一个一致且易于共享的工作环境。

步骤 1: 创建 Dockerfile

首先,我们需要创建一个 Dockerfile 来定义我们的数据分析环境。在你的工作目录中,创建一个名为 Dockerfile 的文件,并添加以下内容:

# 从官方 Python 镜像开始构建
FROM python:3.8-slim

# 安装 Jupyter 和常见的数据分析库
RUN pip install jupyter pandas numpy matplotlib seaborn

# 设置工作目录,用于在容器内部运行 Jupyter Notebook
WORKDIR /data

# 暴露 Jupyter Notebook 运行的端口
EXPOSE 8888

# 启动 Jupyter Notebook
CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--port=8888", "--no-browser", "--allow-root"]

这个 Dockerfile 从 Python 3.8 镜像开始,安装了 Jupyter Notebook 和几个常用的数据分析库。它还设置了工作目录并暴露了运行 Jupyter Notebook 所需的端口。

步骤 2: 构建 Docker 镜像

接下来,我们可以使用以下命令来构建我们的 Docker 镜像:

docker build -t python-data-analysis .

这个命令会根据 Dockerfile 构建一个名为 python-data-analysis 的镜像。

步骤 3: 运行 Docker 容器

现在,我们可以运行这个镜像了:

docker run -p 8888:8888 python-data-analysis

这个命令会启动一个 Docker 容器,并将本地机器的 8888 端口映射到容器的 8888 端口。当容器启动后,它将运行 Jupyter Notebook。

在容器运行后,你会在命令行中看到一个 URL,其中包含了访问 Jupyter Notebook 的 token。复制并粘贴这个 URL 到浏览器中,你就可以开始在 Jupyter Notebook 中进行数据分析了。

数据分析示例

在 Jupyter Notebook 中,你可以执行各种数据分析任务。例如,你可以使用 Pandas 来加载和分析数据,使用 Matplotlib 和 Seaborn 来进行数据可视化。以下是一个简单的示例:

# 导入所需的库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# 创建一个简单的数据集
data = pd.DataFrame({
    'x': range(1, 11),
    'y': np.random.rand(10),
})

# 使用 Seaborn 画一个散点图
sns.scatterplot(x='x', y='y', data=data)
plt.show()

通过这个案例,你可以看到如何快速地在 Docker 中搭建一个完整的数据分析环境,这个环境可以在不同机器上轻松复制和共享。这为数据分析和科学研究提供了极大的便利,特别是在协作和远程工作的场景中。

通过这些案例,你将能够掌握在 Docker 中安装、配置和运行 Python 应用的基本技巧,这些技巧在实际的生产和工作环境中非常有用。这些案例不仅提供了一个实用的起点,也帮助你理解 Docker 在不同应用场景中的灵活性和强大功能。

1.3 Docker 的基本命令

掌握 Docker 的基本命令对于有效使用 Docker 来说至关重要。这一节将详细介绍 Docker 的一些核心命令,并通过实用的 Python 案例来展示这些命令的使用。

1.3.1 重点基础知识

为了有效地使用 Docker,了解其核心命令是至关重要的。这些命令涉及到容器的创建、运行、管理和镜像的处理。以下是 Docker 常用命令的详细讲解:

  1. docker run: 这是启动新容器的基本命令。例如,docker run -d -p 5000:5000 flask-app 会在后台运行一个 Flask 应用,并将容器的端口 5000 映射到主机的端口 5000。

  2. docker build: 此命令用于从 Dockerfile 创建一个新的镜像。例如,docker build -t my-image-name . 会根据当前目录的 Dockerfile 构建一个名为 my-image-name 的镜像。

  3. docker images: 用来列出本地所有的 Docker 镜像。这有助于查看已有的镜像及其标签和大小。

  4. docker ps: 列出当前运行的容器。使用 docker ps -a 可以查看所有容器,包括未运行的。

  5. docker stop: 用于停止一个或多个正在运行的容器。例如,docker stop container_id 会停止指定的容器。

  6. docker rm: 删除一个或多个容器。需要注意的是,只有停止的容器才能被删除。例如,docker rm container_id 会删除指定的容器。

  7. docker rmi: 删除一个或多个镜像。这是管理本地镜像空间的重要命令。例如,docker rmi image_id 会删除指定的镜像。

  8. docker logs: 查看容器的日志输出。这对于调试和了解容器的行为非常有用。例如,docker logs container_id 会显示指定容器的日志。

  9. docker exec: 在运行中的容器内执行命令。这常用于调试或修改容器内的设置。例如,docker exec -it container_id bash 会在指定的容器内启动一个交互式 bash shell。

  10. docker pull: 从 Docker Hub 或其他 Docker 仓库拉取(下载)镜像。例如,docker pull ubuntu 会从 Docker Hub 下载最新的 Ubuntu 镜像。

  11. docker push: 将本地镜像推送到 Docker Hub 或其他 Docker 仓库。在执行此命令之前,需要先登录到 Docker Hub。例如,docker push my-username/my-image

通过理解和实践这些基本命令,你将能够有效地管理 Docker 容器和镜像,为构建和部署应用提供坚实的基础。

1.3.2 重点案例:使用 Docker 运行 Python 脚本

在这个案例中,我们将展示如何使用 Docker 来运行一个简单的 Python 脚本。这个脚本会打印出当前的日期和时间,演示了如何在 Docker 容器中执行 Python 代码。

步骤 1: 创建 Python 脚本

首先,我们需要编写一个 Python 脚本。在你的工作目录中,创建一个名为 date_time_script.py 的文件,并添加以下内容:

# date_time_script.py
from datetime import datetime

print(f"Current date and time: {datetime.now()}")

这个脚本简单地输出当前的日期和时间。

步骤 2: 编写 Dockerfile

接下来,我们需要创建一个 Dockerfile 来定义如何在 Docker 容器中运行这个脚本。在你的工作目录中,创建一个名为 Dockerfile 的文件,并添加以下内容:

# 使用官方 Python 运行时作为父镜像
FROM python:3.8

# 将工作目录设置为 /app
WORKDIR /app

# 将当前目录中的文件复制到容器的 /app 目录
COPY date_time_script.py /app/

# 运行 date_time_script.py 脚本时,调用 Python 解释器
CMD ["python", "./date_time_script.py"]

这个 Dockerfile 使用 Python 3.8 官方镜像作为基础,设置工作目录,并将我们的脚本复制到容器中。最后,它指定了容器启动时执行的命令。

步骤 3: 构建 Docker 镜像

现在,我们可以使用以下命令来构建我们的 Docker 镜像:

docker build -t datetime-python .

这个命令会根据 Dockerfile 构建一个名为 datetime-python 的镜像。

步骤 4: 运行 Docker 容器

一旦镜像构建完成,我们就可以运行一个基于该镜像的容器了:

docker run datetime-python

当这个命令执行时,它会启动一个新的容器实例,容器会运行 date_time_script.py 脚本,并显示输出。你应该会在命令行中看到类似 “Current date and time: 2023-02-24 15:30:00.123456” 的消息。

通过这个案例,你学会了如何使用 Docker 构建一个 Python 应用的运行环境,并且理解了 Docker 容器如何运行 Python 脚本。这为使用 Docker 处理更复杂的 Python 应用提供了基础。

1.3.3 拓展案例 1:Docker 中的 Flask 应用

在这个案例中,我们将通过 Docker 容器来部署一个简单的 Flask Web 应用。这个案例展示了如何使用 Docker 来封装和运行一个基于 Python 的 Web 应用,确保应用在不同环境下的一致性。

步骤 1: 创建 Flask 应用

首先,我们需要创建 Flask 应用的基础代码。在你的工作目录中,创建一个名为 app.py 的文件,并添加以下内容:

# app.py
from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello_world():
    return 'Hello, Dockerized Flask!'

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0')

此代码创建了一个简单的 Flask 应用,它在根 URL (/) 上返回一条消息。

步骤 2: 添加依赖文件

接下来,创建一个名为 requirements.txt 的文件,列出 Flask 应用的依赖:

flask

步骤 3: 编写 Dockerfile

现在,我们编写一个 Dockerfile 来定义 Flask 应用的容器化。在你的工作目录中,创建一个名为 Dockerfile 的文件,并添加以下内容:

# 使用官方 Python 运行时作为父镜像
FROM python:3.8

# 将工作目录设置为 /app
WORKDIR /app

# 将当前目录中的文件复制到容器的 /app 目录
COPY . /app

# 安装 requirements.txt 中的所有依赖
RUN pip install --no-cache-dir -r requirements.txt

# 使得端口 5000 可供此容器外的环境使用
EXPOSE 5000

# 定义环境变量
ENV FLASK_APP=app.py

# 运行 Flask 应用
CMD ["flask", "run", "--host=0.0.0.0"]

步骤 4: 构建 Docker 镜像

使用以下命令来构建 Docker 镜像:

docker build -t flask-app .

这个命令会根据 Dockerfile 构建一个名为 flask-app 的镜像。

步骤 5: 运行 Docker 容器

构建完镜像后,使用以下命令运行容器:

docker run -p 5000:5000 flask-app

这个命令会启动一个基于 flask-app 镜像的容器,并将容器的 5000 端口映射到主机的 5000 端口。

现在,Flask 应用已在 Docker 容器中运行。在浏览器中访问 http://localhost:5000,你应该能看到 “Hello, Dockerized Flask!” 的消息。

通过这个案例,你可以看到 Docker 如何帮助我们轻松地部署一个 Flask Web 应用,并保证应用在不同环境中的一致性。这种方法不仅适用于开发和测试环境,也适用于生产环境,使得部署变得更加简单和可靠。

1.3.4 拓展案例 2:Docker 中的 Jupyter Notebook

在这个案例中,我们将演示如何使用 Docker 容器来部署 Jupyter Notebook,这是一个广泛使用的工具,用于数据分析和科学计算。Docker 化 Jupyter Notebook 可以确保在任何环境中都能以相同的方式运行,方便共享和协作。

步骤 1: 编写 Dockerfile

我们从创建 Dockerfile 开始,该文件定义了 Jupyter Notebook 运行所需的环境。在你的工作目录中,创建一个名为 Dockerfile 的文件,并添加以下内容:

# 从官方 Python 镜像开始构建
FROM python:3.8-slim

# 安装 Jupyter Notebook
RUN pip install notebook

# 设置工作目录
WORKDIR /workspace

# 暴露 Jupyter Notebook 运行的端口
EXPOSE 8888

# 启动 Jupyter Notebook
CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--port=8888", "--no-browser", "--allow-root"]

这个 Dockerfile 使用 Python 3.8 官方镜像作为基础,安装 Jupyter Notebook,并设置工作目录。它还暴露了运行 Jupyter Notebook 所需的端口,并定义了容器启动时执行的命令。

步骤 2: 构建 Docker 镜像

接下来,使用以下命令来构建 Docker 镜像:

docker build -t jupyter-notebook .

这个命令会根据 Dockerfile 构建一个名为 jupyter-notebook 的镜像。

步骤 3: 运行 Docker 容器

现在,我们可以运行这个镜像了:

docker run -p 8888:8888 jupyter-notebook

这个命令启动了一个 Docker 容器,将本地机器的 8888 端口映射到容器的 8888 端口。当容器启动后,它将运行 Jupyter Notebook。

在容器运行后,你会在命令行中看到一个 URL,其中包含了访问 Jupyter Notebook 的 token。复制并粘贴这个 URL 到浏览器中,你就可以开始在 Jupyter Notebook 中工作了。

使用 Jupyter Notebook

在 Jupyter Notebook 中,你可以创建新的笔记本来写 Python 代码,进行数据分析和可视化。例如,你可以导入数据分析和科学计算的库,如 Pandas、NumPy 和 Matplotlib,来分析数据集并绘制图表。

通过这个案例,你可以看到 Docker 如何帮助我们快速搭建一个数据分析环境。这个环境可以在不同机器上轻松复制和共享,非常适合团队合作和远程工作。使用 Docker 化的 Jupyter Notebook,数据科学家和分析师可以保证在任何地方都能以一致的方式工作,无需担心环境配置的不一致性。

这些案例展示了 Docker 在不同 Python 应用场景中的实用性,从简单脚本的执行到复杂的 Web 应用和数据分析环境的部署,反映了 Docker 在现代软件开发和数据科学中的广泛应用。通过这些案例,你可以更好地理解和掌握 Docker 的基本命令及其在实际生产环境中的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1468875.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

主机开机正常但是显示器不亮怎么办 电脑故障问题解答

随着科技的不断发展,电脑或许已经是我们日常生活中最常接触的设备之一了。但是设备毕竟是设备,用久了自然会出毛病,开机的时候,主机开了,但是电脑显示屏不亮,这时候我们该怎么处理呢?下面我就来介绍几种解…

ES坑-创建索引使用_下划线-黑马旅游搜不到

学ES的时候,星级过滤无效 找不到数据。 需要 但是我们在创建的时候使用的是keyword 通过研究发现,我们导入数据的时候应该默认的为starName 我get库时候发现有2个字段 所以通过star_name搜索因为都是空数据搜不到,而starName类型为text所以…

MFC由初值终值步长生成数值序列

matlab的冒号运算符可以生成数值序列; 下面来生成自己的数值序列; vc6新建一个对话框工程; 放几个控件;添加成员变量如下; void CMycolonDlg::OnButton1() {// TODO: Add your control notification handler code hereUpdateData(TRUE);double d1, d2;CString str1, …

Qt MDI应用方法:QMdiArea和QMdiSubWindows类

重点: 1.使用MDI应用程序,需要在主窗口的工作区放置一个QMdiArea组件。 并将QMdiArea组件设置成中心窗口 2.MDI有两个显示模式:Tab多页显示模式和子窗口显示模式 子窗口显示模式有两种显示方法:窗口级联展开和平铺展开 窗口级联…

[electron]官方示例解析

官方例子 github链接 main.js const { app, BrowserWindow } require(electron)说句实话这里的语法是有部分看不懂的。导入模块虽然electron有很多模块。但是这里只是用到了app 和 BrowserWindow function createWindow () {// Create the browser window.const mainWindo…

零基础学编程,编程简单学,中文编程工具下载及工具箱进度条构件的用法

一、前言 今天给大家分享的中文编程开发语言工具 进度条构件的用法。 编程入门视频教程链接 https://edu.csdn.net/course/detail/39036 编程工具及实例源码文件下载可以点击最下方官网卡片——软件下载——常用工具下载——编程工具免费版下载及实例源码下载。 进度条 进度…

Javase补充-Arrays类的常用方法汇总

文章目录 一 . 排序方法二 . 查找方法三 . 判断是否相等的方法四 . 拷贝方法五 . 填充方法 一 . 排序方法 我们第一个要介绍的就是sort方法 这个排序实现的底层逻辑应该是十分复杂的,以我们目前的水平体系应该无法理解,我们今天尝试用我们可以理解的一种排序算法,插入排序来模…

Nodejs+vue图书阅读评分个性化推荐系统

此系统设计主要采用的是nodejs语言来进行开发,采用 vue框架技术,对于各个模块设计制作有一定的安全性;数据库方面主要采用的是MySQL来进行开发,其特点是稳定性好,数据库存储容量大,处理能力快等优势&#x…

C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码

1 模拟退火 *问题:**给定一个成本函数f:r^n–>r*,找到一个 n 元组,该元组最小化 f 的值。请注意,最小化函数值在算法上等同于最大化(因为我们可以将成本函数重新定义为 1-f)。 很多有微积分/分析背景的人可能都熟悉单变量函数的简单优化。…

Linux---进程间通信(下)

1、System V 共享内存 原理如下图 系统调用接口介绍 int shmget(key_t key, size_t size, int shmflg) 功能:用来创建共享内存 参数 key:这个共享内存段名字,内核用key来标识共享内存size:共享内存大小shmflg:由九个权…

留子厨房开发日志

以下记录了使用go语言框架Beego,Mysql数据库,Redis数据库实现一个点菜/菜谱应用API的全过程。 技术方案 github地址 数据库设计 新建数据库: CREATE DATABASE menu;新建数据表: CREATE TABLE menu ( id int(10) unsigned NOT …

Docker 第十九章 : 阿里云个人镜像仓使用

Docker 第十九章 : 阿里云个人镜像仓使用 本章知识点: 如何创建镜像库,如何设置密码,如何登录与退出个人镜像仓,如何本地打镜像,如何将本地镜像推送到个人镜像库。 背景 在项目YapiDocker部署中,因读取mongo:latest 版本不一致,导致后续执行步骤的异常。遇到此场景…

OpenCV Mat实例详解 六

本文将接着OpenCV Mat实例详解继续介绍OpenCV Mat类的操作符及公有成员函数。 Mat & operator Mat & operator (const Mat &m) 将一个Mat对象赋值个另一个Mat对象。 Mat & operator (const MatExpr &expr) 将一个Mat表达式值赋值给Mat对象 Mat & op…

【高德地图】Android高德地图绘制标记点Marker

📖第4章 Android高德地图绘制标记点Marker ✅绘制默认 Marker✅绘制多个Marker✅绘制自定义 Marker✅Marker点击事件✅Marker动画效果✅Marker拖拽事件✅绘制默认 Infowindow🚩隐藏InfoWindow 弹框 ✅绘制自定义 InfoWindow🚩实现 InfoWindow…

Covalent Network(CQT)与 Movement Labs 达成合作,重新定义 M2 系统区块链数据可用性与性能

Covalent Network(CQT)是行业领先的多链索引器,正在与 Movement Labs 的 M2 展开具有突破性意义的合作。M2 是以太坊上的首个 Move-EVM(MEVM)ZK rollup 。这一战略合作标志着先进的实时数据索引和部署工具,…

Sora - 探索AI视频模型的无限可能

Sora - 探索AI视频模型的无限可能 随着人工智能技术的飞速发展,AI视频模型已成为科技领域的新热点。而在这个浪潮中,OpenAI推出的首个AI视频模型Sora,以其卓越的性能和前瞻性的技术,引领着AI视频领域的创新发展。让我们将一起探讨Sora的技术特点、应用场景以及对未来创作方…

高级RAG:使用RAGAs + LlamaIndex进行RAG评估,包括原理、图和代码

原文地址:Using RAGAs LlamaIndex for RAG evaluation 2024 年 2 月 5 日 如果您已经为实际的业务系统开发了检索增强生成(Retrieval Augmented Generation, RAG)应用程序,那么您可能会关心它的有效性。换句话说,您…

【大数据】Flink 内存管理(三):TaskManager 内存分配(理论篇)

Flink 内存管理(三):TaskManager 内存分配 1.配置 Total Memory2.配置 Heap and Managed Memory2.1 Task (Operator) Heap Memory2.2 Managed Memory 3.配置 Off-Heap Memory(Direct or Native)4.详细内存模型5.Framew…

现在学Oracle是49年入国军么?

今天周末,不聊技术,聊聊大家说的最多的一个话题 先说明一下,防止挨喷😆 本人并不是职业dba,对数据库就是爱好,偶尔兼职,以下仅个人观点分析,如有不同观点请轻喷,哈哈&…

分享一个我爱工具网源码优化版

应用介绍 本文来自:分享一个我爱工具网源码优化版 - 源码1688 前几天在网上看到了一个不错的工具网源码,但是源码存在一些问题,遂进行了修改优化。 主要修改内容有: 1、后台改为账号密码登录,上传即用,不…