YOLOv5改进 | SPPF篇 | 利用YOLOv9最新的SPPELAN模块改进SPPF(全网独家创新,附手撕结构图)

news2025/1/22 21:34:11

 一、本文介绍

本文给大家带来的改进机制是利用2024/02/21号最新发布的YOLOv9其中提出的SPPELAN模块来改进SPPF,其中YOLOv9针对于这个模块并没有介绍,只是在其项目文件中用到了,我将其整理出来用于我们的YOLOv5的项目,同时空间金字塔池化作为我们YOLOv5中的一个比较独特的存在其的改变并不会影响我们的模型其它的改进太多,所以如果你融合方面比较困难,可以尝试替换一下SPPF来改变模型的结构从而达到一个创新的目的,同时本文的内容目前网络上并无其它人总结大家可以尝试以下在自己数据集上的效果。

欢迎大家订阅我的专栏一起学习YOLO! 

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

 一、本文介绍

二、手撕结构图

三、核心代码 

 四、手把手教你添加SPPELAN机制 

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、SPPELAN的yaml文件和运行记录

5.1 SPPELAN的yaml文件

5.2 SPPELAN的训练过程截图 

五、本文总结


二、手撕结构图

其还提出了以结构名为SPPELAN的空间金字塔池化结构,其结构图和代码如下所示! 

class SP(nn.Module):
    def __init__(self, k=3, s=1):
        super(SP, self).__init__()
        self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)

    def forward(self, x):
        return self.m(x)


class SPPELAN(nn.Module):
    # spp-elan
    def __init__(self, c1, c2, c3):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = c3
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = SP(5)
        self.cv3 = SP(5)
        self.cv4 = SP(5)
        self.cv5 = Conv(4*c3, c2, 1, 1)

    def forward(self, x):
        y = [self.cv1(x)]
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
        return self.cv5(torch.cat(y, 1))


三、核心代码 

核心代码的使用方式看章节四! 

import torch
import torch.nn as nn

__all__ = ['SPPELAN']

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))


class SP(nn.Module):
    def __init__(self, k=3, s=1):
        super(SP, self).__init__()
        self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)

    def forward(self, x):
        return self.m(x)


class SPPELAN(nn.Module):
    # spp-elan
    def __init__(self, c1, c2, c3):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = c3
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = SP(5)
        self.cv3 = SP(5)
        self.cv4 = SP(5)
        self.cv5 = Conv(4*c3, c2, 1, 1)

    def forward(self, x):
        y = [self.cv1(x)]
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
        return self.cv5(torch.cat(y, 1))

 四、手把手教你添加SPPELAN机制 

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四 

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、SPPELAN的yaml文件和运行记录

5.1 SPPELAN的yaml文件

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 5 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
  - [10, 13, 16, 30, 33, 23] # P3/8
  - [30, 61, 62, 45, 59, 119] # P4/16
  - [116, 90, 156, 198, 373, 326] # P5/32


# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    [-1, 3, C3, [128]],
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    [-1, 6, C3, [256]],
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    [-1, 9, C3, [512]],
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    [-1, 3, C3, [1024]],
    [-1, 1, SPPELAN, [1024, 256]], # 9
  ]

# YOLOv5 v6.0 head
head: [
    [-1, 1, Conv, [512, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 6], 1, Concat, [1]], # cat backbone P4
    [-1, 3, C3, [512, False]], # 13

    [-1, 1, Conv, [256, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 4], 1, Concat, [1]], # cat backbone P3
    [-1, 3, C3, [256, False]], # 17 (P3/8-small)

    [-1, 1, Conv, [256, 3, 2]],
    [[-1, 14], 1, Concat, [1]], # cat head P4
    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

    [-1, 1, Conv, [512, 3, 2]],
    [[-1, 10], 1, Concat, [1]], # cat head P5
    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  ]


5.2 SPPELAN的训练过程截图 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1468658.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue3中ref创建变量取值时自动补充 .value 插件 volar

插件 TypeScript Vue Plugin (Volar) 设置中配置

自然语言处理中关键概念——词嵌入(Word Embedding)

词嵌入(Word Embedding)是一种在自然语言处理中广泛使用的表示方法,它将离散的词汇表中的每个词转换为一个连续向量空间中的稠密向量。这种低维度实数向量能够捕捉词语之间的语义和句法关系。 通过训练神经网络模型(如word2vec、G…

一周学会Django5 Python Web开发-Http请求HttpRequest请求类

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计25条视频,包括:2024版 Django5 Python we…

open3d KD-Tree K近邻点搜索

open3d KD-Tree K近邻点搜索 一、算法原理1.KD-Tree 介绍2.原理 二、代码三、结果1.原点云2.k近邻点搜索后的点云 四、相关数据 一、算法原理 1.KD-Tree 介绍 kd 树或 k 维树是计算机科学中使用的一种数据结构,用于在具有 k 维的空间中组织一定数量的点。它是一个…

【Django开发】0到1开发美多shop项目:短信验证码和RabbitMQ。全md文档笔记(附代码 文档)

本系列文章md笔记(已分享)主要讨论django商城项目相关知识。项目利用Django框架开发一套前后端不分离的商城项目(4.0版本)含代码和文档。功能包括前后端不分离,方便SEO。采用Django Jinja2模板引擎 Vue.js实现前后端…

开源世界的学术问题

自由软件基金会是1983年成立的,到现在是41年。正好很有意思的是,在去年还有一篇文章(CSDN 的翻译),专门在质疑说成立 40 年的自由软件基金会是不是已经快不行了,所以我们会用这个标题叫做兴衰发展历程来介绍…

Windows安装HBuilderX

下载 HBuilderX下载地址: 下载地址 解压安装包 HBuilderX,Windows为zip包,解压后才能使用。 首先,选中下载的zip包,点击右键菜单,点击解压到当前文件夹进入解压后的文件夹,找到HBuilderX.exe&#xff0…

OpenFeign整合Sentinel

OpenFeign 整合 Sentinel 实现服务降级 引入依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- nacos服务发现 --><depen…

抖音数据抓取工具|短视频下载工具|视频内容提取软件

一、开发背景&#xff1a; 随着抖音平台的流行&#xff0c;越来越多的人希望能够下载抖音视频以进行个人收藏或分享。然而&#xff0c;目前在网上找到的抖音视频下载工具功能单一&#xff0c;操作繁琐&#xff0c;无法满足用户的需求。因此&#xff0c;我们决定开发一款功能强大…

unity Aaimation Rigging使用多个约束导致部分约束失去作用

在应用多个约束时&#xff0c;在Hierarchy的顺序可能会影响最终的效果。例如先应用了Aim Constraint&#xff0c;然后再应用Two Bone Constraint&#xff0c;可能会导致Two Bone Constraint受到Aim Constraint的影响而失效。因此&#xff0c;在使用多个约束时&#xff0c;应该仔…

代码随想录刷题笔记-Day23

1. 组合 77. 组合https://leetcode.cn/problems/combinations/ 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1&#xff1a; 输入&#xff1a;n 4, k 2 输出&#xff1a; [[2,4],[3,4],[2,3],[1,2],…

R3F(React Three Fiber)经验篇

之前一直在做ThreeJS方向&#xff0c;整理了两篇R3F&#xff08;React Three Fiber&#xff09;的文档&#xff0c;这是经验篇&#xff0c;如果您的业务场景需要使用R3F&#xff0c;可以参考一下这个文档。下面是目录&#xff0c;按照需求自取。 基础篇 ⬇️ R3F&#xff08;…

buuctf_N1BOOK_粗心的小李

题目&#xff1a; 看完题目&#xff0c;git下载文件&#xff1f;然后将.git文件传到线上环境&#xff1f;&#xff08;which 会造成git泄露的安全威胁&#xff09;<这个背景抱歉我不太了解哈&#xff0c;可能后续有补充> 这里主要记录做法过程&#xff1a; 工具&#xf…

MAC地址学习和老化

MAC地址学习过程 一般情况下&#xff0c;MAC地址表是设备根据收到的数据帧里的源MAC地址自动学习而建立的。 图1 MAC地址学习示意图 如图1&#xff0c;HostA向SwitchA发送数据时&#xff0c;SwitchA从数据帧中解析出源MAC地址&#xff08;即HostA的MAC地址&#xff09;和VLAN…

7.网络游戏逆向分析与漏洞攻防-游戏网络架构逆向分析-通过逆向分析确定游戏明文接收数据过程

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;通过逆向分析确定游戏明文发送数据过程 上一个内容中得出它是使用的send函数发送的数据包&#xff0c;所以接收数据它指定用的是recv函数接收的数据 然后在跳转recv函数分析时发现跳转到了wsock32.d…

Git diff Word 文档

前言 前段时间用 nodeJS 写了一个提交代码的工具&#xff0c;开发过程中在认证部分遇到了一些小问题&#xff0c;于是就想看看官方的文档中有没有什么说明之类的&#xff0c;没想到文档中的内容十分丰富&#xff0c;除了解释了 git 相关的原理外&#xff0c;还学到了很多有用的…

TensorRT及CUDA自学笔记005 GPU架构和线程束

TensorRT及CUDA自学笔记005 GPU架构和线程束 GPU架构 流处理器streaming multiprocessor &#xff08;SM&#xff09; 每一个SM包含整数个CUDA core、共享内存\L1缓存&#xff08;shared memory\L1cache&#xff09;、注册文件&#xff08;Register File&#xff09;、加载和…

剪辑视频调色怎么让画质变得清晰 视频剪辑调色技巧有哪些方面 剪辑视频免费的软件有哪些 会声会影调色在哪里 会声会影模板素材

视频调色的作用有很多&#xff0c;除了进行风格化剪辑以外&#xff0c;还可以让作品的画质变得清晰。通过调色来增强画面的清晰度&#xff0c;在观感上也会显得十分自然。视频调色的技巧有很多&#xff0c;并且原理大都十分简单。有关剪辑视频调色怎么让画质变得清晰&#xff0…

旅游组团自驾游拼团系统 微信小程序python+java+node.js+php

随着社会的发展&#xff0c;旅游业已成为全球经济中发展势头最强劲和规模最大的产业之一。为方便驴友出行&#xff0c;寻找旅游伙伴&#xff0c;更好的规划旅游计划&#xff0c;开发一款自驾游拼团小程序&#xff0c;通过微信小程序发起自驾游拼团&#xff0c;吸收有车或无车驴…

iptables和五链四表相关规则说明

文章目录 1. iptables的作用2. iptables和netfilter的联系和区别3. 四表五链说明3.1 四表3.2 五链3.3 表与链之间的包含关系 4. iptables规则的常用命令和使用方法4.1 iptables规则组成4.2 规则数据管理 5. 常用的iptables场景5.1 禁止外部主机ping内部主机5.2 禁止某些端口访问…