📘 Day 18
🎉 本系列为Python基础学习,原稿来源于 30-Days-Of-Python 英文项目,大奇主要是对其本地化翻译、逐条验证和补充,想通过30天完成正儿八经的系统化实践。此系列适合零基础同学,或仅了解Python一点知识,但又没有系统学习的使用者。总之如果你想提升自己的Python技能,欢迎加入《挑战30天学完Python》
- 📘 Day 18
- 正则表达式
- re 模块
- re 函数
- match
- search
- findall
- sub
- split
- 正则语法
- 方括号 []
- 转义 \
- 一或多次 +
- 任意字符 .
- 零或多次 *
- 零或一次 ?)
- 数量 {}
- 开头 ^
- 不包含 [^]
- 💻 第18天练习
- 练习1级
- 练习2级
- 练习3级
- 正则表达式
正则表达式
正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。要在python中使用RegEx,首先我们应该导入名为 re 的模块。
re 模块
导入模块以后,我们就可以使用它来检查或者查找了。
import re
re 函数
为了使用不同的模式进行查找, re 提供了一些函数方法来进行匹配。
- re.match: 只在字符串的第一行开始搜索,如果找到则返回匹配的对象,否则返回None。
- re.search: 如果字符串(包括多行字符串)中有匹配对象,则返回匹配对象。
- re.findall: 返回包含所有匹配项的列表,如果没有匹配则返回空列表。
- re.split: 方法按照能够匹配的子串将字符串分割后返回列表。
- re.sub: 查找并替换一个或者多个匹配项。
Match
# 语法形式
match(pattern, string, flags=0)
# pattern: 匹配的正则表达式
# string:要匹配的字符串
# flags:[可选] 用来控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等
import re
txt = 'I love to teach python and javaScript'
# 本身反馈一个 span 对象
match = re.match('I love to teach', txt, re.I) # re.I 不区分大小写
print(match) # <re.Match object; span=(0, 15), match='I love to teach'>
# 进一步我们可以使用span()获取匹配的起始位置和结束位置的元组值
span = match.span()
print(span) # (0, 15)
# 再进一步可以打印出拆分的起始和结束索引,以及使用分片获取匹配字符串
start, end = span
print(start, end) # 0, 15
substring = txt[start:end]
print(substring) # I love to teach
如例上边例子中示,我们在目标字符串中查找是否有 I love to teach 的字符串匹配。其中从开始的位置我们找到了对应匹配,进而得到了一个对象的返回。
import re
txt = 'I love to teach python and javaScript'
match1 = re.match('I like to teach', txt, re.I)
print(match1) # None
match2 = re.match('love', txt)
print(match2) # None
此例子中字符串不包含 I like to teach,或者没用匹配开头字符,因此匹配方法返回None。
Search
# 语法
re.search(pattern, string, flags=0)
# 参数说明同match
import re
txt = '''Python is the most beautiful language that a human being has ever created.
I recommend python for a first programming language'''
# 返回匹配对象span
match = re.search('first', txt, re.I)
print(match) # <re.Match object; span=(100, 105), match='first'>
# 获取匹配开始和结束位置元组
span = match.span()
print(span) # (100, 105)
# 获取开始和结束值,并获截取字字符串
start, end = span
print(start, end) # 100 105
substring = txt[start:end]
print(substring) # first
# 没有任何匹配返回None
nom = re.search('weather', txt, re.I)
print(nom) # None
正如你所见,搜索要比匹配方式好的多。因为它可以在整个文本中进行查找匹配。并返回第一找到的对象,否则返回None。接下来还有一个更好的函数 findall 它可以匹配所有并以列表形式返回。
findall
findall() 以列表的形式返回所有匹配
import re
txt = '''Python is the most beautiful language that a human being has ever created.
I recommend python for a first programming language'''
matches = re.findall('language', txt, re.I)
print(matches) # ['language', 'language']
可以看到,单词 language 在字符串中出现了两次。现在我们将在字符串中寻找Python和Python单词:
txt = '''Python is the most beautiful language that a human being has ever created.
I recommend python for a first programming language'''
# It returns list
matches = re.findall('python', txt, re.I)
print(matches) # ['Python', 'python']
这个例子中因为我们使用标记位(re.I) 忽略大小写,所以返回两个。如果我们没有使用它,看看是什么结果。
import re
matches = re.findall('Python', txt)
print(matches) # ['Python']
当然我们如果想要达到其他效果,也可以用其他方法,不过就没有上边使用标记位那么优雅了。
import re
txt = '''Python is the most beautiful language that a human being has ever created.
I recommend python for a first programming language'''
matches = re.findall('Python|python', txt)
print(matches) # ['Python', 'python']
#
matches = re.findall('[Pp]ython', txt)
print(matches) # ['Python', 'python']
sub
匹配并替换字符串,直接看例子:
import re
txt = '''Python is the most beautiful language that a human being has ever created.
I recommend python for a first programming language'''
match_replaced = re.sub('Python|python', 'JavaScript', txt, re.I)
print(match_replaced) # JavaScript is the most beautiful language that a human being has ever created.
# 或者
match_replaced = re.sub('[Pp]ython', 'JavaScript', txt, re.I)
print(match_replaced) # JavaScript is the most beautiful language that a human being has ever created.
让我们再来看一个例子。下边是一个包含很多多余 % 字符的字符串,让人晦涩难懂。让我们用此方法清楚掉它。
import re
txt = '''%I a%m te%%a%%che%r% a%n%d %% I l%o%ve te%ach%ing.
T%he%re i%s n%o%th%ing as r%ewarding a%s e%duc%at%i%ng a%n%d e%m%p%ow%er%ing p%e%o%ple.
I fo%und te%a%ching m%ore i%n%t%er%%es%ting t%h%an any other %jobs.
D%o%es thi%s m%ot%iv%a%te %y%o%u to b%e a t%e%a%cher?'''
matches = re.sub('%', '', txt)
print(matches)
得到整洁的文本输出
I am teacher and I love teaching.
There is nothing as rewarding as educating and empowering people.
I found teaching more interesting than any other jobs.
Does this motivate you to be a teacher?
split
返回分割后的列表。
txt = '''I am teacher and I love teaching.
There is nothing as rewarding as educating and empowering people.
I found teaching more interesting than any other jobs.
Does this motivate you to be a teacher?'''
print(re.split('\n', txt)) # 按照换行符 \n 进行分割返回
# 其实等同于字符直接调用split方法
print(txt.split('\n'))
['I am teacher and I love teaching.', 'There is nothing as rewarding as educating and empowering people.', 'I found teaching more interesting than any other jobs.', 'Does this motivate you to be a teacher?']
正则语法
在以往我们声明一个变量,使用的是单引号或者双引号。如果要声明一个正则变量则是 r''
下面的模式仅用小写字母标识apple,为了使其不区分大小写,我们要么重写模式,要么添加一个标志。
import re
regex_pattern = r'apple'
txt = 'Apple and banana are fruits. An old cliche says an apple a day a doctor way has been replaced by a banana a day keeps the doctor far far away. '
matches = re.findall(regex_pattern, txt)
print(matches) # ['apple']
# 添加标记位使其大小写不敏感
matches = re.findall(regex_pattern, txt, re.I)
print(matches) # ['Apple', 'apple']
# 或者我们使用一组规则匹配方法
regex_pattern = r'[Aa]pple' # [Aa]表示匹配字符串首字符可以是大写A,也可以是小写a
matches = re.findall(regex_pattern, txt)
print(matches) # ['Apple', 'apple']
这里先附上标记位包含哪些:
- re.I:匹配对大小写不敏感
- re.M:多行匹配(影响 ^ 和 $)
- re.S:使 . 匹配包括换行在内的所有字符
然后就详细看下正则里的一些语法符
- []: 一组字符
- [a-c] 表示 a 或 b 或 c
- [a-z] 表示 小写 a 到 z 任意字符
- [A-Z] 表示 大写 A to Z 任意字符
- [0-3] 表示 0 或 1 或 2 或 3
- [0-9] 表示0 到 9 任意数字
- [A-Za-z0-9] 表示任意单字符, 即 小写字母a到z, 大写字母A到Z 或数字0到9
- \: 转义特殊字符
- \d 表示 匹配任意数字,相当于 [0-9].
- \D 表示 匹配任意非数字
- . : 匹配任意字符(除了换行符 \n)
- ^: 匹配开头
- r’^substring’ 例如 r’^love’, 必须以love开头的句子
- r’[^] 表示不在[]中的字符,例如 r’[^abc] 表示不是a, 不是b, 不是c。即除a,b,c之外的字符
- $: 匹配结尾
- r’substring ′ 举例 r ′ l o v e ' 举例 r'love ′举例r′love’, 必须以love结尾的句子
- *: 0或多个次
- r’[a]*’ 表示可以不出现,或者可以出现多次
- +: 0或多个次
- r’[a]+’ 表示至少一次或多次
- ?: 0或1次
- r’[a]?’ 表示零次或一次
- {n}:精确匹配个数
- {3}: 表示 正好3个字符
- {3,}: 表示 至少3个字符
- {3,8}: 表示 3到8个字符
- |: 不是就是(或)
- r’apple|banana’ 表示要么是 apple 要么是 banana
- (): 正则表达式分组并记住匹配的文本
让我们用一些例子来上边这些匹配字符是如何使用的。
方括号 []
让我们用方括号来匹配小写和大写
import re
regex_pattern = r'[Aa]pple'
txt = 'Apple and banana are fruits. An old cliche says an apple a day a doctor way has been replaced by a banana a day keeps the doctor far far away.'
matches = re.findall(regex_pattern, txt)
print(matches) # ['Apple', 'apple']
如我我们想再额外查找 banana,我们可以优化匹配如下:
import re
regex_pattern = r'[Aa]pple|[Bb]anana'
txt = 'Apple and banana are fruits. An old cliche says an apple a day a doctor way has been replaced by a banana a day keeps the doctor far far away.'
matches = re.findall(regex_pattern, txt)
print(matches) # ['Apple', 'banana', 'apple', 'banana']
我们在方括号中使用了字符或 | ,因此设法提取出了 Apple, Apple, Banana 和 Banana。
转义 \
import re
regex_pattern = r'\d' #
txt = 'This regular expression example was made on December 6, 2019 and revised on July 8, 2021'
matches = re.findall(regex_pattern, txt)
print(matches) # ['6', '2', '0', '1', '9', '8', '2', '0', '2', '1'], 提取了所有数字,但这却不是我们想要的效果
一或多次 +
结合上边 \d 使用+做个组合优化
import re
regex_pattern = r'\d+' # d表示匹配数字, +表示一次或多次
txt = 'This regular expression example was made on December 6, 2019 and revised on July 8, 2021'
matches = re.findall(regex_pattern, txt)
print(matches) # ['6', '2019', '8', '2021'] - 现在才是我们想要的效果
任意字符 .
import re
regex_pattern = r'[a].' # 小写a和任意
txt = '''Apple and banana are fruits'''
matches = re.findall(regex_pattern, txt) # 匹配多个项目
print(matches) # ['an', 'an', 'an', 'a ', 'ar'] 分别对应and中an,banana中an、an、a空格,are中ar
regex_pattern = r'[a].+' # . 任意字符, + 一次或多次(连续)
matches = re.findall(regex_pattern, txt)
print(matches) # ['and banana are fruits']
零或多次 *
零次或多次。即可能不会出现,也可能多次出现。
import re
regex_pattern = r'[a].*'
txt = '''Apple and banana are fruits'''
matches = re.findall(regex_pattern, txt)
print(matches) # ['and banana are fruits']
零或一次 ?
零次或一次。即可能不会出现,也可能只出现一次。
import re
txt = '''I am not sure if there is a convention how to write the word e-mail.
Some people write it as email others may write it as Email or E-mail.'''
regex_pattern = r'[Ee]-?mail' # ? 表示 - 是个可选项
matches = re.findall(regex_pattern, txt)
print(matches) # ['e-mail', 'email', 'Email', 'E-mail']
正则数量 {}
我们可以使用花括号指定我们在文本中寻找的子字符串的长度。让我们想一下,我们如果对一个长度为4个字符的子字符串感兴趣的话:
import re
txt = '今年的大年三十日期是2023年1月23日,去年的则是2022年1月31日,真是一年比一年早'
regex_pattern = r'\d{4}' # 精准匹配有四个数字的
matches = re.findall(regex_pattern, txt)
print(matches) # ['2023', '2022']
regex_pattern = r'\d{1,4}' # 匹配1,2,3,4 贪婪模式
matches = re.findall(regex_pattern, txt)
print(matches) # ['2023', '1', '23', '2022', '1', '31']
开头 ^
- 匹配字符串的开头
import re
txt = '今天天气很好,所以今天你的心情好吗?'
regex_pattern = r'^今天' # ^ 表示必须以“今天”开头
matches = re.findall(regex_pattern, txt)
print(matches) # ['今天'] 注意只返回了一个
不包含 [^]
import re
txt = '今年的大年三十日期是2023年1月23日,去年的则是2022年1月31日,真是一年比一年早'
regex_pattern = r'[^\u4e00-\u9fa5, ]+' # ^ 排除中文字符,逗号和空格
matches = re.findall(regex_pattern, txt)
print(matches) # ['2023', '1', '23', '2022', '1', '31']
💻 第18天练习
练习1级
- 下面这段话中出现频率最高的单词是什么?
paragraph = 'I love teaching. If you do not love teaching what else can you love. I love Python if you do not love something which can give you all the capabilities to develop an application what else can you love.
[
(6, 'love'),
(5, 'you'),
(3, 'can'),
(2, 'what'),
(2, 'teaching'),
(2, 'not'),
(2, 'else'),
(2, 'do'),
(2, 'I'),
(1, 'which'),
(1, 'to'),
(1, 'the'),
(1, 'something'),
(1, 'if'),
(1, 'give'),
(1, 'develop'),
(1, 'capabilities'),
(1, 'application'),
(1, 'an'),
(1, 'all'),
(1, 'Python'),
(1, 'If')
]
- 从以下这段对话中提取数字 “The position of some particles on the horizontal x-axis are -12, -4, -3 and -1 in the negative direction, 0 at origin, 4 and 8 in the positive direction.” 并计算出最远距离点。
points= ['-12', '-4', '-3', '-1', '0', '4', '8']
sorted_points= [-12, -4, -3, -1, 0, 4, 8]
distance = |-12| + |8| # 20
练习2级
- 编写一个方法来识别字符串是否是有效的python变量
is_valid_variable('first_name') # True is_valid_variable('first-name') # False is_valid_variable('1first_name') # False is_valid_variable('firstname') # True
练习3级
-
清除以下文本无用的字符。且统计出优化后的文本中出现频率最高的三个单词。
sentence = '''%I $am@% a %tea@cher%, &and& I lo%#ve %tea@ching%;. There $is nothing; &as& mo@re rewarding as educa@ting &and& @emp%o@wering peo@ple. ;I found tea@ching m%o@re interesting tha@n any other %jo@bs. %Do@es thi%s mo@tivate yo@u to be a tea@cher!?''' print(clean_text(sentence)) I am a teacher and I love teaching There is nothing as more rewarding as educating and empowering people I found teaching more interesting than any other jobs Does this motivate you to be a teacher print(most_frequent_words(cleaned_text)) # [(3, 'I'), (2, 'teaching'), (2, 'teacher')]
练习参考答案请移步 github项目地址 18_exercise.py
<< Day 17 | Day 19 >>