【实战篇】Redis单线程架构的优势与不足

news2024/11/17 19:39:33

请添加图片描述

前言

  • 01 Redis中的多线程
  • 02 I/O多线程
  • 03 Redis中的多进程
    • 问题
  • 04 结论

很多人都遇到过这么一道面试题:Redis是单线程还是多线程?这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程,说复杂是因为这个答案其实并不准确。

  • 难道Redis不是单线程?我们启动一个Redis实例,验证一下就知道了。Redis安装部署方式如下所示:
// 下载
wget https://download.redis.io/redis-stable.tar.gz
tar -xzvf redis-stable.tar.gz
// 编译安装
cd redis-stable
make
// 验证是否安装成功
./src/redis-server -v
Redis server v=7.2.4
  • 接下来启动Redis实例,使用命令ps查看所有线程,如下所示:
// 启动Redis实例
./src/redis-server ./redis.conf

// 查看实例进程ID
ps aux | grep redis
root     385806  0.0  0.0 245472 11200 pts/2    Sl+  17:32   0:00 ./src/redis-server 127.0.0.1:6379

// 查看所有线程
ps -L -p 385806
   PID    LWP TTY          TIME CMD
385806 385806 pts/2    00:00:00 redis-server
385806 385809 pts/2    00:00:00 bio_close_file
385806 385810 pts/2    00:00:00 bio_aof
385806 385811 pts/2    00:00:00 bio_lazy_free
385806 385812 pts/2    00:00:00 jemalloc_bg_thd
385806 385813 pts/2    00:00:00 jemalloc_bg_thd
  • 竟然有6个线程!不是说Redis是单线程吗?怎么会有这么多线程呢?

这6个线程的含义你可能不太了解,但是通过这个示例至少说明Redis并不是单线程。

01 Redis中的多线程

  • 接下来我们逐个介绍上述6个线程的作用:

  • redis-server:

主线程,用于接收并处理客户端请求。

  • jemalloc_bg_thd

jemalloc 是新一代的内存分配器,Redis底层使用他管理内存。

  • bio_xxx:

以bio前缀开始的都是异步线程,用于异步执行一些耗时任务。其中,线程bio_close_file用于异步删除文件,线程bio_aof用于异步将AOF文件刷到磁盘,线程bio_lazy_free用于异步删除数据(懒删除)。

需要说明的是,主线程是通过队列将任务分发给异步线程的,并且这一操作是需要加锁的。主线程与异步线程的关系如下图所示:

请添加图片描述

  • 主线程与异步线程
    这里我们以懒删除为例,讲解为什么要使用异步线程。Redis是一款内存数据库,支持多种数据类型,包括字符串、列表、哈希表、集合等。思考一下,删除(DEL)列表类型数据的流程是怎样的呢?第一步从数据库字典中删除该键值对,第二步遍历并删除列表中的所有元素(释放内存)。想想如果列表中的元素数目非常多呢?这一步将非常耗时。这种删除方式称为同步删除,流程如下图所示:

请添加图片描述

  • 同步删除流程图
    针对上述问题,Redis提出了懒删除(异步删除),主线程在收到删除命令(UNLINK)时,首先从数据库字典中删除该键值对,随后再将删除任务分发给异步线程bio_lazy_free,由异步线程执行第二步耗时逻辑。这时候的流程如下图所示:

请添加图片描述

  • 懒删除流程图

02 I/O多线程

难道Redis是多线程?那为什么我们老说Redis是单线程呢?这是因为读取客户端命令请求,执行命令以及向客户端返回结果都是在主线程完成的。不然的话,多线程同时操作内存数据库,并发问题如何解决?如果每次操作之前都加锁,那和单线程又有什么区别呢?

当然这一流程在Redis6.0版本也发生了改变,Redis官方指出,Redis是基于内存的键值对数据库,执行命令的过程是非常快的,读取客户端命令请求和向客户端返回结果(即网络I/O)通常会成为Redis的性能瓶颈。

因此,在Redis 6.0版本,作者加入了多线程I/O的能力,即可以开启多个I/O线程,并行读取客户端命令请求,并行向客户端返回结果。I/O多线程能力使得Redis性能提升至少一倍。

为了开启多线程I/O能力,需要先修改配置文件redis.conf:

io-threads-do-reads yes
io-threads 4
  • 这两个配置含义如下:

io-threads-do-reads:是否开启多线程I/O能力,默认为"no";

io-threads:I/O线程数目,默认为1,即只使用主线程执行网络I/O,线程数最大为128;该配置应该根据CPU核数设置,作者建议,4核CPU设置2~3个I/O线程,8核CPU设置6个I/O线程。

  • 开启多线程I/O能力之后,重新启动Redis实例,查看所有线程,结果如下:
ps -L -p 104648
   PID    LWP TTY          TIME CMD
104648 104648 pts/1    00:00:00 redis-server
104648 104654 pts/1    00:00:00 io_thd_1
104648 104655 pts/1    00:00:00 io_thd_2
104648 104656 pts/1    00:00:00 io_thd_3
……

由于我们设置了io-threads等于4,所以会创建4个线程用于执行I/O操作(包括主线程),上述结果符合预期。

  • 当然,只有I/O阶段才使用了多线程,处理命令请求还是单线程,毕竟多线程操作内存数据存在并发问题。

  • 最后,开启了I/O多线程之后,命令的执行流程如下图所示:

请添加图片描述

I/O多线程流程图

03 Redis中的多进程

Redis还有多进程?是的。在某些场景下,Redis也会创建多个子进程来执行一些任务。以持久化为例,Redis支持两种类型的持久化:

  • AOF(Append Only File):可以看作是命令的日志文件,Redis会将每一个写命令都追加到AOF文件。

  • RDB(Redis Database):以快照的方式存储Redis内存中的数据。命令SAVE用于手动触发RDB持久化。想想如果Redis中的数据量非常大,持久化操作必然耗时比较长,而Redis是单线程处理命令请求,那么当命令SAVE的执行时间过长时,必然会影响其他命令的执行。

命令SAVE有可能会阻塞其他请求,为此,Redis又引入了命令BGSAVE,该命令会创建一个子进程来执行持久化操作,这样就不会影响主进程执行其他请求了。

我们可以手动执行命令BGSAVE验证。首先,使用GDB跟踪Redis进程,添加断点,让子进程阻塞在持久化逻辑。如下所示:

// 查询Redis进程ID
ps aux | grep redis
root     448144  0.1  0.0 270060 11520 pts/1    tl+  17:00   0:00 ./src/redis-server 127.0.0.1:6379

// GDB跟踪进程
gdb -p 448144

// 跟踪创建的子进程(默认GDB只跟踪主进程,需手动设置)
(gdb) set follow-fork-mode child
// 函数rdbSaveDb用于持久化数据快照
(gdb) b rdbSaveDb
Breakpoint 1 at 0x541a10: file rdb.c, line 1300.
(gdb) c
设置好断点之后,使用Redis客户端发送命令BGSAVE,结果如下:

// 请求立即返回
127.0.0.1:6379> bgsave
Background saving started

// GDB输出以下信息
[New process 452541]
Breakpoint 1, rdbSaveDb (...) at rdb.c:1300
可以看到,GDB目前跟踪的是子进程,进程ID是452541。也可以通过Linux命令 ps 查看所有进程,结果如下:

ps aux | grep redis
root     448144  0.0  0.0 270060 11520 pts/1    Sl+  17:00   0:00 ./src/redis-server 127.0.0.1:6379
root     452541  0.0  0.0 270064 11412 pts/1    t+   17:19   0:00 redis-rdb-bgsave 127.0.0.1:6379

可以看到子进程的名称是redis-rdb-bgsave,也就是该进程将所有数据的快照持久化在RDB文件。

问题

问题1:为什么采用子进程而不是子线程呢?

因为RDB是将数据快照持久化存储,如果采用子线程,主线程与子线程将会共享内存数据,主线程在持久化的同时还会修改内存数据,这有可能导致数据不一致。而主进程与子进程的内存数据是完全隔离的,不存在此问题。

问题2:假设Redis内存中存储了10GB的数据,在创建子进程执行持久化操作之后,此时子进程也需要10GB的内存吗?复制10GB的内存数据,也会比较耗时吧?另外如果系统只有15GB的内存,还能执行BGSAVE命令吗?

这里有一个概念叫写时复制(copy on write),在使用系统调用fork创建子进程之后,主进程与子进程的内存数据暂时还是共享的,但是当主进程需要修改内存数据时,系统会自动将该内存块复制一份,以此实现内存数据的隔离。

请添加图片描述

04 结论

作者介绍
李乐:好未来Golang开发专家、西安电子科技大学硕士,曾就职于滴滴,乐于钻研技术与源码,合著有《高效使用Redis:一书学透数据存储与高可用集群》《Redis5设计与源码分析》《Nginx底层设计与源码分析》。

《高效使用Redis:一书学透数据存储与高可用集群》

请添加图片描述

推荐语:深入Redis数据结构与底层实现,攻克Redis数据存储与集群管理难题。

Redis的进程模型/线程模型还是比较复杂的,这里也只是简单介绍了部分场景下的多线程以及多进程,其他场景下的多线程、多进程还有待读者自己研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1467189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp腾讯地图JavaScript Api,H5端和原生APP端可用

因项目需要,在uniapp中集成使用腾讯地图,为了方便维护,希望通过一套代码实现H5和APP同时可用。H5显示相对简单,APP端比较麻烦,记录下实现过程 一、集成步骤 1.使用 renderjs script标签使用renderjs,因为…

互联网加竞赛 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.2 打哈欠检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 🔥 优质竞赛项目系列&#x…

[yolov9]使用python部署yolov9的onnx模型

【框架地址】 https://github.com/WongKinYiu/yolov9 【yolov9简介】 在目标检测领域,YOLOv9 实现了一代更比一代强,利用新架构和方法让传统卷积在参数利用率方面胜过了深度卷积。 继 2023 年 1 月 正式发布一年多以后,YOLOv9 终于来了&a…

NXP实战笔记(八):S32K3xx基于RTD-SDK在S32DS上配置LCU实现ABZ解码

目录 1、概述 2、SDK配置 2.1、IO配置 2.2、TRGMUX配置 2.3、LCU配置 2.4、Trgmux配置 2.5、Emios配置 2.6、代码实现 1、概述 碰到光电编码器、磁编码器等,有时候传出来的位置信息为ABZ的方式,在S32K3里面通过TRGMUX、LCU、Emios结合的方式可以实现ABZ解码。 官方…

Linux快速修改ip地址

Linux修改IP配置 一 、查找ip配置文件 ifcfg-ens33二、编辑 vi ifcfg-ens33文件三、重启网络或者重启系统 一 、查找ip配置文件 ifcfg-ens33 cd /etc/sysconfig/network-scripts/ls //查看network-scripts文件夹下面的文件二、编辑 vi ifcfg-ens33文件 vi ifcfg-ens33注意&…

初始化(挂载)Linux数据盘(小于2TB)

本文中的操作系统以Linux CentOS 7.5 64位操作系统为例,采用fdisk分区工具为数据盘设置分区。 前提条件 已成功挂载云硬盘。 创建磁盘分区 如果数据盘对外呈现为一个磁盘,不需要分区,可以跳过此步骤。 1.登录Linux实例。 2.运行如下命令&…

Rust核心:【所有权】相关知识点

rust在内存资源管理上采用了(先进优秀?算吗)但特立独行的设计思路:所有权。这是rust的核心,贯穿在整个rust语言的方方面面,并以此为基点来重新思考和重构软件开发体系。 涉及到的概念点:借用&am…

【Vuforia+Unity】AR05-实物3D模型识别功能实现(ModelTarget )

不管是什么类型的识别Vuforia的步骤基本都是: 把被识别的物体转成图、立体图、柱形图,3D模型、环境模型,然后模型生成Vuforia数据库-导入Unity-参考模型位置开始摆放数字内容,然后参考模型自动隐藏-发布APP-识别生活中实物-数字内容叠加上去! 对于3D物体的识别,可以是虚…

鸿蒙原生应用再添一批新丁!看看新闻、 随申办、浙里办、得物、新零售事业群等入局鸿蒙

鸿蒙原生应用再添一批新丁!看看新闻、 随申办、浙里办、得物、新零售事业群等入局鸿蒙 来自 HarmonyOS 微博2月22日消息,#鸿蒙千帆起#上海广播电视台旗下 看看新闻KNEWS 宣布启动鸿蒙原生应用开发,上海广播电视台也成为了全国首家推行鸿蒙原…

Linux运维-Web服务器的配置与管理(PHP)

Web服务器的配置与管理(PHP) 项目场景 某企业在CentOS上搭建Web服务系统,以PHP作为网页开发环境,以MySQL为后台数据库。 基础知识 PHP PHP原始为Personal Home Page的缩写,已经正式更名为 “PHP: Hypertext Preprocessor”(超…

Jetson Xavier NX 与笔记本网线连接 ,网络共享,ssh连接到vscode

Jetson Xavier NX 与笔记本网线连接 ,网络共享,ssh连接到vscode Jetson Xavier NX桌面版需要连接显示屏、鼠标和键盘,操作起来并不方便,因此常常需要ssh远程连接到本地笔记本电脑,这里介绍一种连接方式,通过…

Cartographer 多分辨率地图和分支定界算法

多分辨率地图 函数调用 PrecomputationGridStack2D 这个图直接让我想起了图像处理中的膨胀操作。膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。 滑窗操作会导致地图变大。 假设原始栅格地图尺寸为[h,…

第一个 Angular 项目 - 添加服务

第一个 Angular 项目 - 添加服务 这里主要用到的内容就是 [Angular 基础] - service 服务 提到的 前置项目在 第一个 Angular 项目 - 动态页面 这里查看 想要实现的功能是简化 shopping-list 和 recipe 之间的跨组件交流 回顾一下项目的结构: ❯ tree src/app/…

第3部分 原理篇2去中心化数字身份标识符(DID)(3)

3.2.2.4. DID文档 (DID Document) 本聪老师:DID标识符和DID URL还都只是ID,必须为它附加一个基本属性才可以证明是该主体独有的。这个就是我们下面介绍的DID文档。 本聪老师:每个DID标识符都唯一对应一个DID文档,也可以说&#x…

什么是负载均衡集群?

目录 1、集群是什么? 2、负载均衡集群技术 3、负载均衡集群技术的实现 4、实现效果如图 5、负载均衡分类 6、四层负载均衡(基于IP端口的负载均衡) 7、七层的负载均衡(基于虚拟的URL或主机IP的负载均衡) 8、四层负载与七层…

Typora+PicGo+super-prefix+阿里云OSS设置图床

🌈个人主页:godspeed_lucip 🔥 系列专栏:实用工具 1 TyporaPicGosuper-prefix阿里云OSS设置图床1.1 设置阿里云OSS1.2 以时间戳命名图片1.2.1 安装super-prefix1.2.2 设置配置文件 1.3 批量上传图片遇到的问题1.4 参考资料 2 将ma…

OpenHarmony JS和TS三方组件使用指导

OpenHarmony JS和TS三方组件介绍 OpenHarmony JS和TS三方组件使用的是OpenHarmony静态共享包,即HAR(Harmony Archive),可以包含js/ts代码、c库、资源和配置文件。通过HAR,可以实现多个模块或者多个工程共享ArkUI组件、资源等相关代码。HAR不…

robots.txt 文件规则

robots.txt 是一种用于网站根目录的文本文件,其主要目的在于指示网络爬虫(web crawlers)和其他网页机器人(bots)哪些页面可以抓取,以及哪些页面不应该被抓取。可以看作是网站和搜索引擎机器人之间的一个协议…

Element table 实现表格行、列拖拽功能

安装包 npm install sortablejs --save <template><div class"draggable" style"padding: 20px"><el-table row-key"id" :data"tableData" style"width: 100%" border><el-table-columnv-for"(it…

osg qt5.15 osg3.6.3 osgEarth3.1 编译爬山

Demo演示&#xff1a;Qt5.15.2OSG3.6.3OsgEarth3.1的QtCreator下的msvc2019x64版本 osgQt编译 步骤一&#xff1a;下载解压 步骤二&#xff1a;CMake配置 步骤三&#xff1a;CMake配置添加osg环境 步骤四&#xff1a;CMake配置添加Qt环境 步骤五&#xff1a;CMake修改CMakeLis…